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Finetuning

Can we leverage large scale pretrained models?

All methods can be used to finetune a model with real measurement data

* Finetuning techniques that leverage self-supervised losses
» How to leverage pretrained denoising diffusion models?

« Test time training



Single-Pixel Camera

« QOperator is a random Bernoulli matrix with 20% undersampling ratio
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Non-Linear Inverse Problems

Can we handle non-linear inverse problems?

 y =sign(4x) [T. and Jacques, 2023] inear

inverse
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Sampling

Can we train posterior samplers, instead of MMSE estimators?

Learn a generative model for p, [Bora, 2018]

D dby,llpy,)  where By = Ago f#N(O, 1)
9

where the divergence d can be approximated using a discriminator.
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Sampling

Can we train posterior samplers, instead of MMSE estimators?

 Diffusion methods rely on MMSE denoisers to obtain posterior samples

E{x|y=x+¢€}=y+a*Viogp(y)

\ /
Y

Approximated via self-supervised denoising network

- If we have incomplete measurements, use E{x|A4,x} o A, instead [Daras et al., 2024]

« Self-supervised variational autoencoders for posterior sampling [Prakash et al., 2020]



Uncertainty Quantification

Can we measure the uncertainty of the reconstructions?

Self-supervised losses can also be used for uncertainty quantification!

True error

« SURE can be used to assess reconstruction error in denoising

« SUREA4SURE [Bellec et al., 2021] gives error variance estimates.

« Elloss can be seen as a bootstrapping technique

[T. & Pereyra, 2024] with well calibrated uncertainty estimates -

Error estimates e’




Beyond Images

Can we use these methods in other modalities?

Methods presented here can be extended to other data modalities

« Audio [Sechaud, 2024] 2020
* Point clouds [Hermosilla, 2019]

« Graphs [Bronstein, 2021]
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Task-Orientated Learning

Often we are not interested in reconstructing, but rather some downstream task
[Bourrier, 2014].

* Necessary and sufficient conditions for solving the downstream task

« Self-supervised learning losses in this case?




Large-Scale Problems

Can we apply these methods in large-scale imaging problems?

« Examples: 3D MRI and tomography

 GPU memory challenges: computing A during training can be
expensive
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Self-supervised example
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https://tachella.github.io/projects/selfsuptutorial/



https://tachella.github.io/projects/selfsuptutorial/

Conclusions

Self-supervised learning for imaging problems

 Theory: Necessary & sufficient conditions for learning
« Unbiased risk estimators
* Number of measurements
 Interplay between forward operator & data invariance

* Practice: self-supervised losses

» Can be applied to any model
» Losses can be combined together



Thanks for your attention!

Tachella.github.io

v Codes
v Presentations
v ...and more
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