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Mathematical problems

1. Signal Recovery: Given the signal model 𝑝𝒙, is there a unique 𝒙 for 𝒚 = 𝐴𝒙

2. Model Identification: Can we uniquely identify the distribution 𝑝𝒙 from the 

measurement distribution 𝑝𝒚?

• All possible pairs of answers possible (eg. no signal recovery but model 

identification possible)

• Signal recovery has been extensively study in the compressed sensing 

community (generally assuming that 𝑝𝒙 is a 𝑘-sparse model.
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Signal Recovery

Signal recovery only possible if  supp 𝑝𝑥 = 𝒳 is low-dimensional.

There are multiple ways to ‘measure’ low-dimensionality. 

A popular choice is box-counting dimension:

dim 𝒳 = lim
𝜖→0

−
log𝑁 𝒳, 𝜖

log 𝜖

Examples: Sparse dictionaries, manifold models, union-of-subspace models, etc. [Bourrier et al., 2014]

where 𝑁(𝒳, 𝜖) is the size

of an 𝜖-covering of 𝒳
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Signal Recovery

Theorem: [Sauer et al., 1991] A signal 𝒙 ∈ 𝒳 ⊂ ℝ𝑛 with dim 𝒳 = 𝑘 can be uniquely 

recovered from 𝒚 = A𝒙 with almost every 𝐴 ∈ ℝ𝑚×𝑛 if

𝑚 > 2𝑘.

𝐴

One–to-one!
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Model Identification

• Model identification is a linear inverse problem in infinite dimensions

𝑝𝑦 𝒚 = ∫ 𝑝 𝒚 𝒙 𝑝𝒙 𝒙 𝑑𝒙

• Here we assume access to 𝑝𝑦 , however, in practice we only have finite observations 

Ƹ𝑝𝒚 = σ𝑖=1
𝑁 𝛿𝒚𝑖

𝑝𝒚 = 𝓐(𝑝𝒙)
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Can we learn with noise?

Noisy measurement setting 𝒚 = 𝒙 + 𝝐

• For additive noise 𝑝 𝒚 𝒙 = 𝑔 𝒙 − 𝒚 :

𝑝𝒚 = 𝒩 0, 𝐼𝜎2 ∗ 𝑝𝒙

• This is a deconvolution problem!

• In Fourier we have, 𝜙𝒚(𝝎) = 𝜙𝒙 𝝎 ො𝑔(𝝎) where 𝜙𝒙 and 𝜙𝒚 are the characteristic 

functions of 𝑝𝒙 and 𝑝𝒚, and ො𝑔 is the Fourier transform of 𝑔.
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Can we learn with noise?

Proposition [T. et al., 2023]: For additive noise with nowhere zero characteristic 

function, it is possible to uniquely identify 𝑝𝒙 from 𝑝𝒚.

• Since 𝒩(𝟎, 𝐼𝜎2) is an invertible kernel ො𝑔 𝝎 ≠ 0 for all 𝝎, we can identify 𝑝𝒙 from 𝑝𝒚

• For non-additive noise (eg. Poisson), the problem is slightly harder
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Geometric intuition

Toy example (𝑛 = 3): Signal set is 𝒳 = supp 𝑝𝑥 = span 1,1,1 T, Gaussian noise.

noise
denoise
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Incomplete Measurements

We now consider incomplete measurements 𝒚𝑖 = 𝐴𝑔𝑖𝒙𝑖 with 𝑔 ∈ {1, … , 𝐺}

• Either multiple operators, or equivariance 𝐴𝑔 = 𝐴𝑇𝑔

Can we uniquely identify the distribution 𝑝𝒙 from the measurement distribution 𝑝𝒚
when the 𝐴𝑔’s are incomplete?

• If 𝑝𝒙 has a low-dimensional support, we can focus on recovering supp 𝑝𝒙 = 𝒳

from supp 𝑝𝑦 = 𝐴𝑔𝒳 𝑔=1:𝐺



10

Geometric intuition

Toy example (𝑛 = 3,𝑚 = 2): Signal set is 𝒳 = span( 1,1,1 T)
Forward operator 𝐴 keeps first 2 coordinates.

𝐴 𝐴−1

𝒴 ≔ {𝑦 = 𝐴𝑥, 𝑥 ∈ 𝒳}
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Geometric intuition 

Toy example (𝑛 = 3,𝑚 = 2): Signal set is 𝒳 = span 1,1,1 T . Forward operator 𝐴 keeps 

first 2 coordinates. Now with explicit shift symmetry

𝐴−1𝒴 𝐴𝑇1
−1𝒴 𝐴𝑇2

−1𝒴

𝒳 =ሩ
𝑔∈𝐺

𝐴𝑔
−1𝒴



Theorem [T. et al., 2023]: Identifying a 𝑘-dimensional 𝒳 from observed sets 

𝒴𝑔 = 𝐴𝑔𝒳 𝑔=1

𝐺
is possible by almost every 𝐴1, … 𝐴𝐺 ∈ ℝ

𝑚×𝑛 if 

𝑚 > 𝑘 +
𝑛

𝐺

Sufficient Condition

• Multiple operator setting: assume 𝐴1, … , 𝐴𝐺 are generic

• If 𝐺 > 𝑛, then the bound is similar to signal recovery.

• ‘almost-every’ result, doesn’t say what happens for a specific subset (eg MRI operators).



Theorem [T. et al.]: 𝐺 cyclic group. Identifying 𝑘-dim 𝐺-invariant set 𝒳 possible by almost 

every 𝐴 ∈ ℝ𝑚×𝑛 with

𝑚 > 2𝑘 +max 𝑐𝑗 + 1 ≥ 2𝑘 +
𝑛

𝐺
+ 1

where 𝑐𝑗 is the multiplicity of the representation.
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Sufficient Condition

• Single operator setting: assume 𝐴 is generic

• If 𝐺 > 𝑛, then the bound is similar to signal recovery.

• ‘almost-every’ result, doesn’t say what happens for a specific subset (e.g. MRI operator).
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Can we learn any model?

Do we need the low dimensional assumption?

We can analyse identifiability using the characteristic function 𝜙𝒙(𝝎)

• For finite groups/finite operators, we only observe 𝜙𝒙 in ڂ𝑔∈𝐺 range(𝐴𝑔) :

𝔼𝒚 𝑒
i𝝎⊤𝐴𝑔

†𝒚 = 𝔼𝒙 𝑒
i𝒙⊤𝐴𝑔

†𝐴𝑔𝝎 = 𝜙𝒙(𝐴𝑔
†𝐴𝑔𝝎)

Theorem [Cramer and Wold, 1936]: Any distribution 𝑝𝒙 is uniquely determined by all

its one-dimensional (𝑚 = 1) projections.

𝜔1

𝜔2
𝐴𝑔
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Can we learn any model?

In practice, the Cramer Wold theorem is not verified, as it requires infinitely diverse operators.

• To uniquely identify 𝑝𝒙 we need that ڂ𝑔∈𝐺 range(𝐴𝑔) = ℝ𝑛 which only holds for 𝐺 → ∞

𝜔1

𝜔2
𝐴1

𝐴2
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