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Mathematical problems

1. Signal Recovery: Given the signal model p,, is there a unique x for y = Ax

2. Model Identification: Can we uniquely identify the distribution p, from the
measurement distribution p,,?

» All possible pairs of answers possible (eg. no signal recovery but model
identification possible)

» Signal recovery has been extensively study in the compressed sensing
community (generally assuming that p, is a k-sparse model.



Signal Recovery

Signal recovery only possible if supp p, = X is low-dimensional.
There are multiple ways to ‘measure’ low-dimensionality.

A popular choice is box-counting dimension:

log N(X, € : .
dim(X) = lim — gN(X, €) where N (X, e)_ls the size
€-0 loge of an e-covering of X

Examples: Sparse dictionaries, manifold models, union-of-subspace models, etc. [Bourrier et al., 2014]



Signal Recovery

Theorem: [Sauer et al., 1991] A signal x € X c R™ with dim(X) = k can be uniquely
recovered from y = Ax with almost every A € R™*" if
m > 2k.




Model Identification

* Model identification is a linear inverse problem in infinite dimensions

py(¥) = | p(y|X)pr(x)dx

Py = A(py)

« Here we assume access to p,, however, in practice we only have finite observations
A _ N
Py = Li=1 0y,



Can we learn with noise?

Noisy measurement settingy = x + €
» For additive noise p(y|x) = g(x — y):

Py = N(0,16%) = py

« Thisis adeconvolution problem!

* In Fourier we have, ¢y (w) = ¢,(w) g(w) where ¢, and ¢, are the characteristic
functions of p, and p,, and g is the Fourier transform of g.



Can we learn with noise?

« Since N (0,I052)is an invertible kernel g(w) # 0 for all w, we can identify p, from Dy

Proposition [T. et al., 2023]: For additive noise with nowhere zero characteristic
function, it is possible to uniquely identify p, from p,,.

« For non-additive noise (eg. Poisson), the problem is slightly harder



Geometric intuition

Toy example (n = 3): Signal setis X = supp p, = span[1,1,1]T, Gaussian noise.
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Incomplete Measurements

We now consider incomplete measurements y; = 4, x; with g € {1, ..., G}
 Either multiple operators, or equivariance A, = AT,

Can we uniquely identify the distribution p, from the measurement distribution p,,
when the A,’s are incomplete?

« If p, has a low-dimensional support, we can focus on recovering supp p, = X
from supp p,, = {AgX}g=1:G



Geometric intuition

Toy example (n = 3, m = 2): Signal setis X = span([1,1,1]")

Forward operator A keeps first 2 coordinates. «
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Geometric intuition

Toy example (n = 3, m = 2): Signal setis X = span[1,1,1]T . Forward operator A keeps
first 2 coordinates. Now with explicit shift symmetry
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Sutficient Condition

« Multiple operator setting: assume A4, ..., A; are generic

Theorem [T. et al., 2023]: Identifying a k-dimensional X’ from observed sets
{yg = AQX}Z=1 is possible by almost every A4, ... A; € R™*" f

> k4=
m G

 If G > n, then the bound is similar to signal recovery.
« ‘almost-every’ result, doesn’t say what happens for a specific subset (eg MRI operators).



Sutficient Condition

« Single operator setting: assume A is generic

Theorem [T. et al.]: G cyclic group. ldentifying k-dim G-invariant set X possible by almost
every A € R™™ with

n
m>2k+maxcj+122k+m+1

where ¢; is the multiplicity of the representation.

« If G > n, then the bound is similar to signal recovery.
« ‘almost-every’ result, doesn’t say what happens for a specific subset (e.g. MRI operator).



Can we learn any model?

Do we need the low dimensional assumption?
We can analyse identifiability using the characteristic function ¢, (w)

» For finite groups/finite operators, we only observe ¢, in U ¢ range(4y) :

iwTAl _ ixTal A, 0 _ T
ye?® 9V =E, e 797°9° = ¢, (A A w)

Theorem [Cramer and Wold, 1936]: Any distribution p, is uniquely determined by all
its one-dimensional (m = 1) projections.
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Can we learn any model?

In practice, the Cramer Wold theorem is not verified, as it requires infinitely diverse operators.

* To uniquely identify p, we need that U ¢, range(4,) = R™ which only holds for G — o
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