

Self Supervised Learning Methods for Imaging Part 4: Learning with equivariance

Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

Learning Approach

Recall:

Proposition: Any reconstruction function $f(y) = A^{\dagger}y + g(y)$ where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A is measurement consistent.

Symmetry Prior

Idea: Most natural signals sets X are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set $\mathcal X$ is invariant to $\left\{T_g\in\mathbb R^{n\times n}\right\}_{g\in G}$ if

 $\forall x \in \mathcal{X}, \forall g \in G, T_g x \in \mathcal{X}$

Other symmetries: rotations, permutation, amplitude

Symmetry Prior

Equivariant Imaging [Chen et al., 2021]

For all $g \in G$ we have

$$
y = Ax = AT_g T_g^{-1} x = A_g x'
$$

- We get multiple virtual operators $\left\{A_g\right\}_{g\in G}$ 'for free'!
- Each AT_g might have a different nullspace

Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping f from observed measurements possible only if $\mathrm{rank}\big(\mathbb{E}_g \ T_g^\top A^\top A T_g\big)=n,$

and thus if $m \geq \max \frac{c_j}{2}$ s_j $\geq \frac{n}{16}$ $\frac{n}{|G|}$ where s_j and c_j are dimension and multiplicity of irreps.

(Non)-Equivariant Operators

Theorem [T. et al., 2023]*:* The full rank condition requires that A **is not equivariant:** $AT_g \neq \tilde{T}_gA$

Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have $f(AT_gx) = T_gf(Ax)$, i.e. $f \circ A$ should be G-equivariant

Equivariant Imaging

How can we enforce equivariance in practice [Chen, 2021]?

$$
\mathcal{L}_{EI}(\mathbf{y}, f) = \mathbb{E}_g || T_g \widehat{\mathbf{x}} - f\big(A T_g \widehat{\mathbf{x}}\big)||^2
$$

where $\hat{\mathbf{x}} = f(\mathbf{y})$ is used as reference

Proposition [T. & Pereyra, *2024*]**:** *For linear and measurement consistent* $Af(Ax) = Ax$ reconstruction, we have

 $\mathcal{L}_{EI}(\mathbf{y}, f) = ||\mathbf{x} - f(\mathbf{y})||^2 + bias$

where the *bias* term is small if $f \circ A$ is **not** equivariant.

Combining Losses

Robust Equivariant Imaging [Chen et al., *2022*]

enforces equivariance of $f \circ A$

$$
\mathcal{L}_{REI}(\mathbf{y}, f) = \mathcal{L}_{SURE}(\mathbf{y}, f) + \mathcal{L}_{EI}(\mathbf{y}, f)
$$

unbiased estimator of 'noiseless'
measurement consistency

• SURE can be replaced by any other noise-robust loss (eg. Noise2Void, etc.)

Magnetic Resonance Imaging

- Operator A is a subset of Fourier measurements (x2 downsampling)
- Dataset is approximately **rotation invariant**

Computed Tomography

- Operator A is (non-linear variant) sparse radon transform
- Mixed Poisson-Gaussian noise
- Dataset is approximately **rotation invariant**

Chen, T., Davies, *CVPR* 2022

Image Deblurring

- Operator A is isotropic blur with Gaussian noise
- Dataset is approximately **scale invariant**

Scanvic, Davies, Abry, T., *arxiv* 2023

References

The full reference list for this tutorial can be found here:

<https://tachella.github.io/projects/selfsuptutorial/>

