

Self Supervised Learning Methods for Imaging Part 4: Learning with equivariance

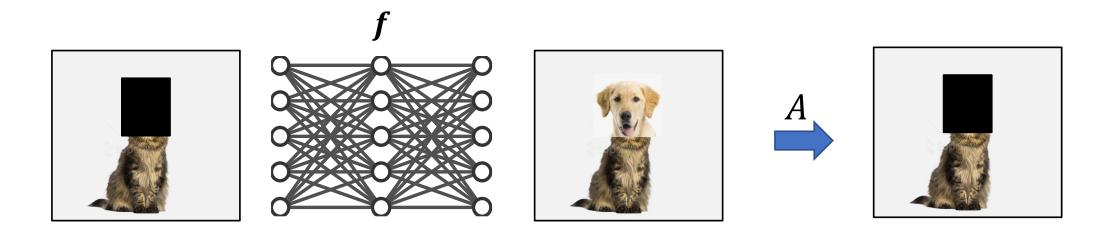
Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

Learning Approach

Recall:

Proposition: Any reconstruction function $f(\mathbf{y}) = A^{\dagger}\mathbf{y} + g(\mathbf{y})$ where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A is measurement consistent.



Symmetry Prior

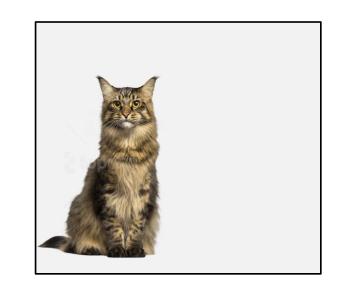
Idea: Most natural signals sets X are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set \mathcal{X} is invariant to $\{T_g \in \mathbb{R}^{n \times n}\}_{g \in G}$ if

 $\forall x \in \mathcal{X}, \ \forall g \in G, \ T_g x \in \mathcal{X}$

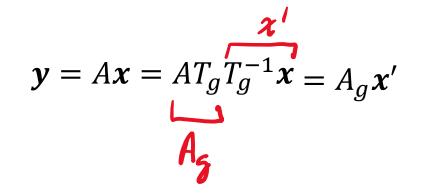
Other symmetries: rotations, permutation, amplitude

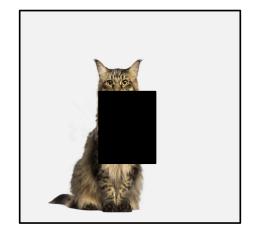


Symmetry Prior

Equivariant Imaging [Chen et al., 2021]

For all $g \in G$ we have



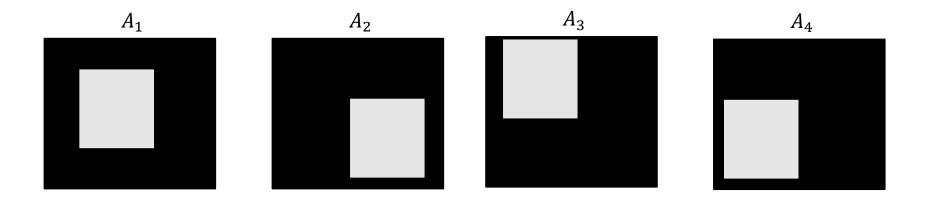


- We get multiple virtual operators $\{A_g\}_{g\in G}$ 'for free'!
- Each AT_g might have a different nullspace

Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping *f* from observed measurements possible only if $\operatorname{rank}(\mathbb{E}_g T_g^{\mathsf{T}}A^{\mathsf{T}}AT_g) = n$,

and thus if $m \ge \max \frac{c_j}{s_j} \ge \frac{n}{|G|}$ where s_j and c_j are dimension and multiplicity of irreps.



(Non)-Equivariant Operators

Theorem [T. et al., 2023]: The full rank condition requires that A is not equivariant: $AT_g \neq \tilde{T}_g A$

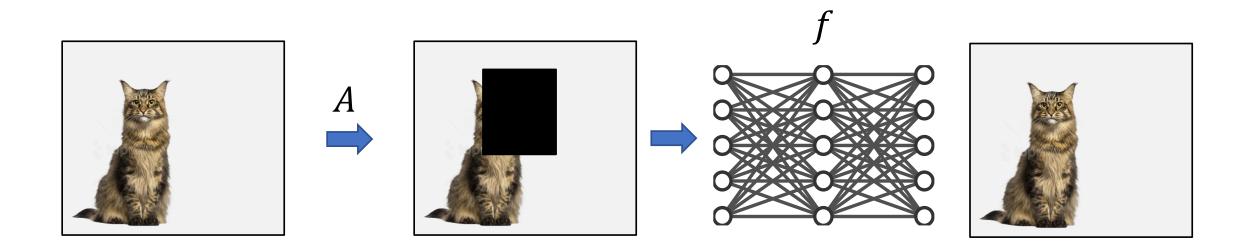
	Translation	Rotation	Scaling	Amplitude
Gaussian Blur	\bigstar			\bigstar
Image Inpainting				\bigstar
Sparse-view CT	\bigstar			\bigstar
Accelerated MRI	\bigstar			\bigstar
Downsampling (with antialias)	\rightarrow	\bigstar		\bigstar

$\operatorname{rank}(\mathbb{E}_g T_g^{T} A^{T} A T_g)$:	$= \operatorname{rank}(A^{T}(\mathbb{E}_{g}\tilde{T}_{g}^{T}\tilde{T}_{g})A) = \operatorname{rank}(A^{T}A) = m < n$
---	---

Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have $f(AT_g x) = T_g f(Ax)$, i.e. $f \circ A$ should be *G*-equivariant



Equivariant Imaging

How can we enforce equivariance in practice [Chen, 2021]?

$$\mathcal{L}_{EI}(\mathbf{y}, f) = \mathbb{E}_g || T_g \widehat{\mathbf{x}} - f(AT_g \widehat{\mathbf{x}}) ||^2$$

where $\hat{x} = f(y)$ is used as reference

Proposition [T. & Pereyra, 2024]: For linear and measurement consistent Af(Ax) = Ax reconstruction, we have

 $\mathcal{L}_{EI}(\mathbf{y}, f) = ||\mathbf{x} - f(\mathbf{y})||^2 + bias$

where the *bias* term is small if $f \circ A$ is **not** equivariant.

Combining Losses

Robust Equivariant Imaging [Chen et al., 2022]

enforces equivariance of $f \circ A$

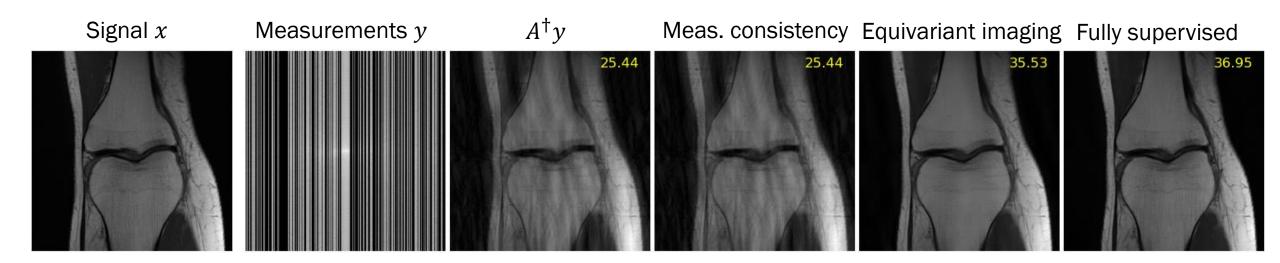
$$\mathcal{L}_{\text{REI}}(\boldsymbol{y}, f) = \mathcal{L}_{\text{SURE}}(\boldsymbol{y}, f) + \mathcal{L}_{\text{EI}}(\boldsymbol{y}, f)$$

unbiased estimator of 'noiseless'
measurement consistency

• SURE can be replaced by any other noise-robust loss (eg. Noise2Void, etc.)

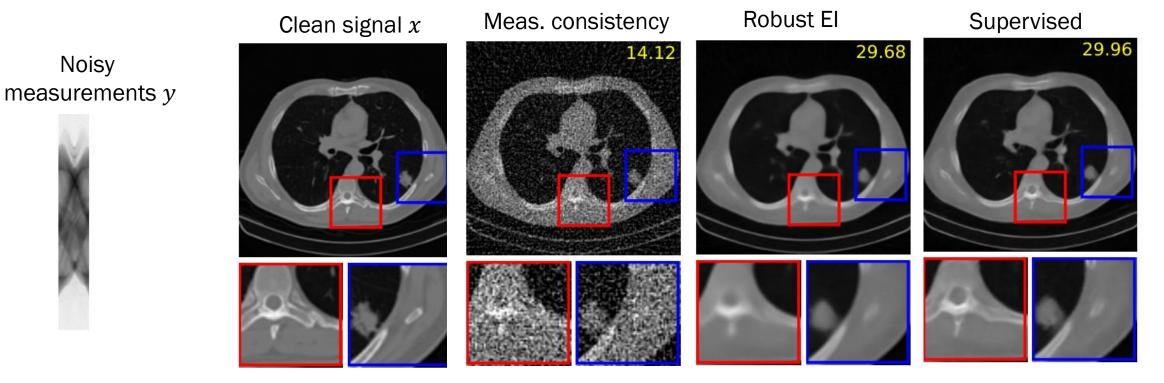
Magnetic Resonance Imaging

- Operator *A* is a subset of Fourier measurements (x2 downsampling)
- Dataset is approximately rotation invariant



Computed Tomography

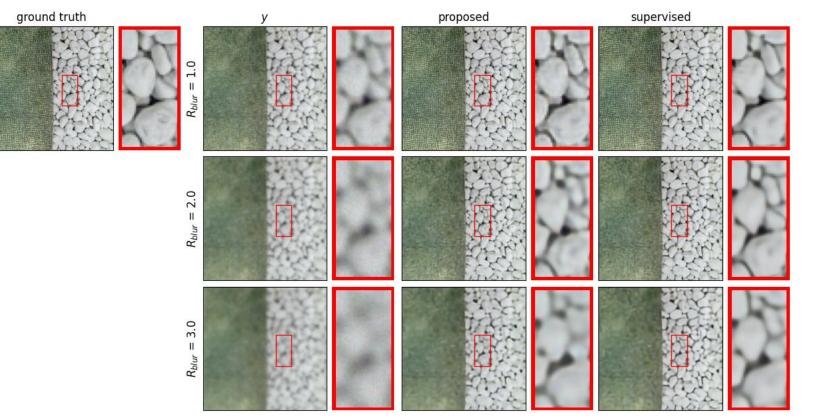
- Operator A is (non-linear variant) sparse radon transform
- Mixed Poisson-Gaussian noise
- Dataset is approximately rotation invariant



Chen, T., Davies, CVPR 2022

Image Deblurring

- Operator A is isotropic blur with Gaussian noise
- Dataset is approximately scale invariant



Scanvic, Davies, Abry, T., arxiv 2023

References

The full reference list for this tutorial can be found here:

https://tachella.github.io/projects/selfsuptutorial/

