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Recall:

Proposition: Any reconstruction function 𝑓 𝒚 = 𝐴†𝒚 + 𝑔(𝒚) where 𝑔:ℝ𝑚 ↦ 𝒩𝐴 is any 

function whose image belongs to the nullspace of 𝐴 is measurement consistent.

Learning Approach

𝒇

𝐴
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Symmetry Prior

Idea: Most natural signals sets 𝒳 are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set 𝒳 is invariant to 𝑇𝑔 ∈ ℝ𝑛×𝑛
𝑔∈𝐺

if

∀𝒙 ∈ 𝒳, ∀𝑔 ∈ 𝐺, 𝑇𝑔𝒙 ∈ 𝒳

Other symmetries: rotations, permutation, amplitude
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Symmetry Prior

Equivariant Imaging [Chen et al., 2021]

For all 𝑔 ∈ 𝐺 we have

𝒚 = 𝐴𝒙 = 𝐴𝑇𝑔𝑇𝑔
−1𝒙

• We get multiple virtual operators 𝐴𝑔 𝑔∈𝐺
‘for free’!

• Each 𝐴𝑇𝑔 might have a different nullspace

= 𝐴𝑔𝒙′
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Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping 𝑓 from observed 

measurements possible only if 

rank 𝔼𝑔 𝑇𝑔
⊤𝐴⊤𝐴𝑇𝑔 = 𝑛, 

and thus if 𝑚 ≥ max
𝑐𝑗

𝑠𝑗
≥

𝑛

𝐺
where 𝑠𝑗 and 𝑐𝑗 are dimension and multiplicity of irreps.

𝐴1 𝐴2 𝐴3 𝐴4
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(Non)-Equivariant Operators

Translation Rotation Scaling Amplitude

Gaussian 

Blur

Image 

Inpainting

Sparse-view

CT

Accelerated

MRI

Downsampling

(with antialias)

Theorem [T. et al., 2023]: The full rank condition requires that 𝐴 is not equivariant: 𝐴𝑇𝑔 ≠ ෨𝑇𝑔𝐴

rank 𝔼𝑔 𝑇𝑔
⊤𝐴⊤𝐴𝑇𝑔 = rank 𝐴⊤(𝔼𝑔 ෨𝑇𝑔

⊤ ෨𝑇𝑔)𝐴 = rank 𝐴⊤𝐴 = 𝑚 < 𝑛
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Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have 𝑓 𝐴𝑇𝑔𝒙 = 𝑇𝑔𝑓(𝐴𝒙), i.e. 𝑓 ∘ 𝐴 should be 𝐺-equivariant

𝐴

𝑓
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Equivariant Imaging

ℒ𝐸𝐼 𝒚, 𝑓 = 𝔼𝑔 || 𝑇𝑔ෝ𝒙 − 𝑓 𝐴𝑇𝑔ෝ𝒙 ||2

Proposition [T. & Pereyra, 2024]: For linear and measurement consistent 

𝐴𝑓 𝐴𝒙 = 𝐴𝒙 reconstruction, we have

ℒ𝐸𝐼 𝒚, 𝑓 = ||𝒙 − 𝑓 𝒚 ||2 + 𝑏𝑖𝑎𝑠

where the bias term is small if 𝑓 ∘ 𝐴 is not equivariant.

How can we enforce equivariance in practice [Chen, 2021]?

where ෝ𝒙 = 𝑓(𝒚) is used as reference
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Combining Losses

• SURE can be replaced by any other noise-robust loss (eg. Noise2Void, etc.)

Robust Equivariant Imaging [Chen et al., 2022]

ℒREI 𝒚, 𝑓 = ℒSURE 𝒚, 𝑓 + ℒEI 𝒚, 𝑓

unbiased estimator of ‘noiseless’

measurement consistency

enforces equivariance of 𝑓 ∘ 𝐴



Equivariant imaging Fully supervised𝐴†𝑦 Meas. consistency
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Magnetic Resonance Imaging

• Operator 𝐴 is a subset of Fourier measurements (x2 downsampling)

• Dataset is approximately rotation invariant

Signal 𝑥 Measurements 𝑦

Chen, T., Davies, CVPR 2022
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Noisy 

measurements 𝑦

Robust EI Supervised Clean signal 𝑥 Meas. consistency

Computed Tomography

• Operator 𝐴 is (non-linear variant) sparse radon transform 

• Mixed Poisson-Gaussian noise 

• Dataset is approximately rotation invariant

Chen, T., Davies, CVPR 2022
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Image Deblurring

• Operator 𝐴 is isotropic blur with Gaussian noise

• Dataset is approximately scale invariant

Scanvic, Davies, Abry, T., arxiv 2023
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