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Learning Approach

Recall:

Proposition: Any reconstruction function f(y) = ATy + g(y) where g: R™ — N, is any
function whose image belongs to the nullspace of A4 is measurement consistent,
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Symmetry Prior

ldea: Most natural signals sets X are invariant to groups of transformations.

Example: natural images are translation invariant

- Mathematically, a set X is invariant to {T, € R™*" }gEG if

VXEX, VgEG, Tyx€EX

Other symmetries: rotations, permutation, amplitude




Symmetry Prior

Equivariant Imaging [Chen et al., 2021]

For all g € G we have /

«  We get multiple virtual operators {Ag}gEG ‘for free’!
« Each AT, might have a different nullspace



Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping f from observed
measurements possible only if

rank(IEg TgTATATg) =n,

and thus if m > maxs—’_ > %where s; and ¢; are dimension and multiplicity of irreps.
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(Non)-Equivariant Operators

Theorem [T. et al., 2023]: The full rank condition requires that A is not equivariant: AT, # TgA

rank(E, T, ATAT,) = rank(A"(E,T, T,)A) = rank(ATA) =m <n
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Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have f(AT,x) = T,f(Ax), i.e. f o A should be G-equivariant
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Equivariant Imaging

How can we enforce equivariance in practice [Chen, 2021]?

Le(y,f) =E, || T,z — f(AT,%)]||?

where X = f(y) is used as reference

Proposition [T. & Pereyra, 2024]: For linear and measurement consistent
Af (Ax) = Ax reconstruction, we have

L, f) =|lx—fII* + bias

where the bias term is small if f o A is not equivariant.



Combining Losses

Robust Equivariant Imaging [Chen et al., 2022]

enforces equivariance of f o A

f—}H
Lrer(Y, f) = Lsyre Y, ) + LEt (Y, f)

. J
Y

unbiased estimator of ‘noiseless’
measurement consistency

« SURE can be replaced by any other noise-robust loss (eg. Noise2Void, etc.)



Magnetic Resonance Imaging

« Operator A is a subset of Fourier measurements (x2 downsampling)
« Dataset is approximately rotation invariant

Signal x Measurements y Aty Meas. consistency Equivariant imaging Fully supervised

|
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Chen, T., Davies, CVPR 2022



Computed Tomography

« Operator A is (non-linear variant) sparse radon transform
« Mixed Poisson-Gaussian noise
« Dataset is approximately rotation invariant
Clean signal x Meas. consistency Robust El Supervised

Noisy
measurements y

Chen, T., Davies, CVPR 2022




Image Deblurring

« Operator A is isotropic blur with Gaussian noise
« Dataset is approximately scale invariant

ground truth
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The full reference list for this tutorial can be found here:

https://tachella.github.io/projects/selfsuptutorial/
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