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Learning from incomplete noiseless measurements 𝒚?

argmin෍

𝑖

𝒚𝑖 − 𝐴𝑓 𝒚𝑖
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Proposition: Any reconstruction function 𝑓 𝒚 = 𝐴†𝒚 + 𝑔(𝒚) is measurement consistent 

where 𝑔:ℝ𝑚 ↦ 𝒩𝐴 is any function whose image belongs to the nullspace of 𝐴.

Learning Approach
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Learning from Measurements

How to learn from only 𝒚?

• Access multiple operators 𝒚𝑖 = 𝐴𝑔𝑖𝒙𝑖 with 𝑔 ∈ {1, … , 𝐺}

• Each 𝐴𝑔 with different nullspace

• Offers the possibility for learning using multiple measurement operators

𝐴1𝑥1 𝐴3𝑥3𝐴2𝑥2𝐴1𝑥1 𝐴2𝑥2 𝐴3𝑥3



Necessary Condition

Proposition: Learning reconstruction mapping 𝑓 from observed 

measurements possible only if 

rank 𝔼𝑔 𝐴𝑔
⊤𝐴𝑔 = 𝑛

and thus, if 𝑚 ≥ 𝑛/𝐺.

Intuition: we need that the operators 𝐴1, 𝐴2, … 𝐴𝐺 cover the whole ambient space [T., 2022].

𝐴1 𝐴2 𝐴3 𝐴4



We will consider networks ෝ𝒙 = 𝑓(𝒚, 𝐴) , where 𝑓 is also a function of 

measurement operator  e.g.,

• Filtered back projection 𝑓 𝒚, 𝐴 = 𝑓(𝐴†𝒚)
• Unrolled networks…

• Naïve measurement consistency loss:

Without noise, a minimizer is the trivial solution 𝑓 𝒚, 𝐴 = 𝐴†𝒚

Learning Approach

ℒMC 𝒚, 𝑓 = 𝔼𝑦,𝑔 ||𝒚 − 𝐴𝑔 𝑓 𝒚, 𝐴𝑔 ||2

𝐴𝑇 outputinput



Noise2Noise Revisited

Artifact2Artifact [Liu et al., 2020]

Assumption: Observe independent subsampled pairs:

𝒚𝑎 = 𝐴𝑎𝒙 + 𝝐𝑎

and 

𝒚𝑏 = 𝐴𝑏𝒙 + 𝝐𝑏

with 𝐴𝑎 , 𝐴𝑏 ~𝑃𝐴, 𝝐𝑎 , 𝝐𝑏~𝑃𝜖, i.i.d.

ℒ𝐴2𝐴 𝒚, 𝑓 = 𝔼𝑎,𝑏|| 𝒚𝑏 − 𝐴𝑏 𝑓 𝒚𝑎 , 𝐴𝑎 ||2

• If rank 𝔼𝑏 𝐴𝑏
⊤𝐴𝑏 = 𝑛, then ℒ𝐴2𝐴 is equivalent to a weighted supervised loss with the same 

minimum

ℒ𝐴2𝐴 𝒚, 𝑓 = 𝔼𝑎 𝒙 − 𝑓 𝒚𝑎 , 𝐴𝑎 𝔼𝑏{𝐴𝑏
⊤𝐴𝑏}

2 + 𝑐𝑜𝑛𝑠𝑡.

• If 𝐴𝑎 , 𝐴𝑏 are subsampling of ortho basis, reweighted version possible [Gan et al., 2021]

• The independence assumption is hard to meet in practice.



Multiplicative Noisier2Noise

Assumption: [Moran et al., 2020] considered a Bernoulli multiplicative noise model which can also be 

viewed as noiseless subsampling

𝒚 = diag 𝒏 𝒙

with 𝑛𝑖 ∈ {0,1} and ℙ(𝑛𝑖 = 0) = 𝑝,

Bernoulli-Noisier2Noise: synthesise: 

𝒛 = diag 𝒎 𝒚 = diag 𝒎 diag 𝒏 𝒙

with 𝑚𝑖 ∈ {0,1} and ℙ(𝑚𝑖 = 0) = 𝑞,

Minimise: ℒBNr2N 𝒚, 𝑓 = 𝔼𝒙,𝒎,𝒏 𝒚 − 𝑓 𝒛, diag 𝒎
2

2
⟶ MMSE estimator: 𝑓 𝒛, diag 𝒎 ≈ 𝔼{𝒚|𝒛,𝒎}

Then 

with 𝑘 =
𝑝

𝑝+𝑞−𝑝𝑞

𝔼 𝒙 𝒛,𝒎 = 1 − 𝑘 −1(𝔼 𝒚 𝒛,𝒎 − 𝑘𝒛)



Measurement Splitting 
What happens if we do not have pairs, i.e. 𝒚𝑔 = 𝐴𝑔𝒙 + 𝝐

Self-Supervised Learning via Data Undersampling (SSDU) [Yaman et al., 2019]: 

randomly split 𝒚 =
𝒚𝑎
𝒚𝑏

and 𝐴𝑔 =
𝐴𝑔,𝑎
𝐴𝑔,𝑏

at each sample 

ℒSSDU 𝒚, 𝑓 = 𝔼𝑔,𝑎,𝑏|| 𝒚𝑏 − 𝐴𝑔,𝑏 𝑓 𝒚𝑎 , 𝐴𝑔,𝑎 ||2

• The trivial solution 𝑓 𝒚, 𝐴 = 𝐴†𝒚 is not a minimizer

• Choice of splitting is important! 

• 𝑨𝑔,𝑎 should keep most measurements

• Variable density Noisier2Noise interpretation [Millard & Chiew, 2023]

• In 𝝐 = 𝟎, setting, with measurement consistent 𝑓, we get: 𝑓 𝒚𝑎 , 𝐴𝑔,𝑎 = 𝔼{𝒙|𝒚𝑎 , 𝐴𝑔,𝑎}

• Does not denoise 𝒚𝑎 but can be modified to do so [Millard & Chiew, 2024] 



Measurement Splitting Revisited

𝐴1 𝐴2 𝐴3 𝐴4

𝐴1,𝑏

𝐴1,𝑎 𝐴2,𝑎

𝐴2,𝑏

𝐴3,𝑎

𝐴3,𝑏

𝐴4,𝑎

𝐴4,𝑏

Warning: This condition is sufficient, but not necessary in general (more on this later)

Same (noiseless) setting: 𝒚𝑔 = 𝐴𝑔𝒙 and randomly split 𝒚 =
𝒚𝑎
𝒚𝑏

and 𝐴𝑔 =
𝐴𝑔,𝑎
𝐴𝑔,𝑏

at each sample. 

Proposition [Daras et al., 2023]: if 𝔼𝐴𝑔|𝐴𝑔,𝑎 𝐴𝑔
⊤𝐴𝑔 has full rank, then measurement splitting loss:

ℒ𝑀𝑆 𝒚, 𝑓 = 𝔼𝑔,𝑎,𝑏 𝒚 − 𝐴𝑔 𝑓 𝒚𝑎 , 𝐴𝑔,𝑎
2

has as minimizer 𝑓 𝒚𝑎 , 𝐴𝑔,𝑎 = 𝔼{𝒙|𝒚𝑎 , 𝐴𝑔,𝑎} as the supervised loss in expectation.

Unlike SSDU this 

includes all of 𝒚. It 

enforces data 

consistency on 𝒚𝑎



The MS loss has same minimiser as supervised loss that uses less measurements [Daras et al. 2023]:

Write 𝑟 𝒚𝑎, 𝐴𝑔,𝑎 = 𝑓 𝒚𝑎, 𝐴𝑔,𝑎 − 𝔼{𝒙| 𝒚𝑎 , 𝐴𝑔,𝑎} as deviation from MMSE loss.

ℒMS 𝒚, 𝑓 = 𝔼 (𝒚 − 𝐴𝑔𝔼{𝒙| 𝒚𝑎 , 𝐴𝑔,𝑎}) − 𝐴𝑔 𝑟 𝒚𝑎 , 𝐴𝑔,𝑎
2

= 𝔼 𝒚 − 𝐴𝑔𝔼{𝒙| 𝒚𝑎, 𝐴𝑔,𝑎}
2
+ 𝔼 𝐴𝑔 𝑟 𝒚𝑎 , 𝐴𝑔,𝑎

2
− 𝔼 (𝒚 − 𝐴𝑔𝔼 𝒙 𝒚𝑎 , 𝐴𝑔,𝑎}

⊤
𝐴𝑔 𝑟 𝒚𝑎 , 𝐴𝑔,𝑎

Final thought: if there is known Gaussian noise, then we can simply replace ℒMS 𝒚, 𝑓 by its SURE 

equivalent or Noisier2Noise…

Measurement Splitting Revisited

1

1 = irreducible error (const.); 

2

2 = deviation from optimal 

(= 0 if 𝔼𝐴𝑔|𝐴𝑔,𝑎 𝐴𝑔
⊤𝐴𝑔 full rank)

= correlation term = 0

3

3



Using All Measurements

Can we use all measurements?

Multi Operator Imaging (MOI) [Tachella et al., 2022] 

ℒ𝑀𝑂𝐼 𝒚, 𝑓 = 𝒚 − 𝐴𝑔𝑓 𝒚, 𝐴𝑔
2
+෍

𝑠

𝑓 𝐴𝑠ෝ𝒙, 𝐴𝑠 − ෝ𝒙
2

with ෝ𝒙 = 𝑓 𝒚, 𝐴𝑔

Can be replaced by SURE,

R2R, etc. 

Enforces 𝑓 𝐴𝑔𝒙, 𝐴𝑔 ≈ 𝑓 𝐴𝑠𝒙, 𝐴𝑠

• The trivial solution 𝑓 𝒚, 𝐴 = 𝐴†𝒚 is not generally a minimizer

• Motivated by identifiability theory of low dimensional set (more later)

• Does not have the rank 𝔼𝐴𝑔|𝐴𝑔,𝑎 𝐴𝑔
⊤𝐴𝑔 = 𝑛 constraint 



Inpainting

• U-Net network

• CelebA dataset

• 𝐴𝑔 are inpainting masks

Signal 𝑥 MOISupervised
AmbientGAN

[Bora et al, 2018]
Measurements 𝑦



Magnetic Resonance Imaging

• Unrolled network

• FastMRI dataset (single coil)

• 𝐴𝑔 are subsets of Fourier measurements (x4 downsampling)

Measurements 𝑦 Signal 𝑥
Measurement Splitting

[Yaman et al., 2019] MOISupervised
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