

Self Supervised Learning Methods for Imaging Part 3: Learning from multiple operators

Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

Learning Approach

Learning from **incomplete noiseless** measurements **?**

$$
\underset{f}{\text{argmin}} \sum_{i} ||\mathbf{y}_i - Af(\mathbf{y}_i)||^2
$$

Proposition: Any reconstruction function $f(y) = A^{\dagger}y + g(y)$ is measurement consistent where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A.

Learning from Measurements

How to learn from only ?

- Access multiple operators $y_i = A_{g_i} x_i$ with $g \in \{1, ..., G\}$
- Each A_g with different nullspace
- Offers the possibility for learning using multiple measurement operators

Necessary Condition

Intuition: we need that the operators A_1, A_2, \ldots, A_G cover the whole ambient space [T., 2022].

Proposition: Learning reconstruction mapping f from observed measurements possible only if $\mathrm{rank}\big(\mathbb{E}_g\, A_g^\mathsf{T} A_g\big) = n$ and thus, if $m \geq n/G$.

Learning Approach

We will consider networks $\hat{\mathbf{x}} = f(\mathbf{y}, A)$, where f is also a function of measurement operator e.g.,

- Filtered back projection $f(y, A) = f(A^{\dagger}y)$
- Unrolled networks…
- Naïve **measurement consistency** loss:

$$
\mathcal{L}_{\text{MC}}(\mathbf{y}, f) = \mathbb{E}_{\mathbf{y}, g} ||\mathbf{y} - A_g f(\mathbf{y}, A_g)||^2
$$

Without noise, a minimizer is the trivial solution $f(\mathbf{y},A)=A^\dagger\mathbf{y}$

Noise2Noise Revisited

Artifact2Artifact [Liu et al., 2020]

Assumption: Observe **independent** subsampled pairs:

 $y_a = A_a x + \epsilon_a$

and

$$
\mathbf{y}_b = A_b \mathbf{x} + \boldsymbol{\epsilon}_b
$$

with A_a , $A_b \sim P_A$, ϵ_a , $\epsilon_b \sim P_\epsilon$, i.i.d.

$$
\mathcal{L}_{A2A}(\mathbf{y},f) = \mathbb{E}_{a,b} || \mathbf{y}_b - A_b f(\mathbf{y}_a, A_a)||^2
$$

• If rank $(E_b A_b^T A_b) = n$, then \mathcal{L}_{A2A} is equivalent to a weighted supervised loss with the same minimum

$$
\mathcal{L}_{A2A}(\mathbf{y},f) = \mathbb{E}_a ||\mathbf{x} - f(\mathbf{y}_a, A_a)||^2_{\mathbb{E}_b\{A_b^\mathsf{T} A_b\}} + const.
$$

- If A_a , A_b are subsampling of ortho basis, reweighted version possible [Gan et al., 2021]
- The independence assumption is hard to meet in practice.

Multiplicative Noisier2Noise

Assumption: [Moran et al., 2020] considered a Bernoulli multiplicative noise model which can also be viewed as noiseless subsampling

$$
y = \text{diag}(n)x
$$

with $n_i \in \{0,1\}$ and $P(n_i = 0) = p$,

Bernoulli-Noisier2Noise: synthesise:

$$
z = \text{diag}(m)y = \text{diag}(m)\text{diag}(n)x
$$

with $m_i \in \{0,1\}$ and $\mathbb{P}(m_i = 0) = q$,

Minimise: $\mathcal{L}_{\text{BNr2N}}(\bm{y},f) = \mathbb{E}_{\bm{x},\bm{m},\bm{n}} \big\|\bm{y} - f\big(\bm{z},\text{diag}(\bm{m})\big)\big\|_2^2 \, \longrightarrow \text{MMSE estimator: } f\big(\bm{z},\text{diag}(\bm{m})\big) \approx \mathbb{E}\{\bm{y}|\bm{z},\bm{m}\}$

Then

$$
\mathbb{E}\{x|\mathbf{z},\mathbf{m}\}=(1-k)^{-1}(\mathbb{E}\{y|\mathbf{z},\mathbf{m}\}-k\mathbf{z})
$$

with $k = \frac{p}{\ln 10}$ $p+q-pq$

Measurement Splitting

What happens if we do not have pairs, i.e. $y_g = A_g x + \epsilon$

Self-Supervised Learning via Data Undersampling (SSDU) [Yaman et al., 2019]: randomly split $y =$ y_a $\begin{bmatrix} \mathbf{y}_a \ \mathbf{y}_b \end{bmatrix}$ and $A_g =$ $A_{g,a}$ $A_{g,b}$ at each sample

$$
\mathcal{L}_{\text{SSDU}}(\mathbf{y}, f) = \mathbb{E}_{g,a,b} || \mathbf{y}_b - A_{g,b} f(\mathbf{y}_a, A_{g,a}) ||^2
$$

- The trivial solution $f(y, A) = A^\dagger y$ is not a minimizer
- Choice of splitting is important!
	- $A_{g,a}$ should keep most measurements
- Variable density Noisier2Noise interpretation [Millard & Chiew, 2023]
	- In $\epsilon = 0$, setting, with measurement consistent f, we get: $f(\mathbf{y}_a, A_{g,a}) = \mathbb{E}\{\mathbf{x} | \mathbf{y}_a, A_{g,a}\}\$
- Does not denoise y_a but can be modified to do so [Millard & Chiew, 2024]

Measurement Splitting Revisited

Same (noiseless) setting: $\mathbf{y}_g = A_g \mathbf{x}$ and randomly split $\mathbf{y} =$ y_a $\begin{bmatrix} 3 & a \ y & b \end{bmatrix}$ and $A_g =$ $A_{g,a}$ $A_{g,b}$ at each sample.

Proposition [Daras et al., 2023]*:* if $\mathbb{E}_{A_g | A_{g,a}} A_g^{\mathsf{T}} A_g$ has full rank, then measurement splitting loss:

Warning: This condition is sufficient, but **not necessary** in general (more on this later)

Measurement Splitting Revisited

The MS loss has same minimiser as supervised loss that uses less measurements [Daras et al. 2023]:

Write $r(\mathbf{y}_a, A_{g,a}) = f(\mathbf{y}_a, A_{g,a}) - \mathbb{E}\{\mathbf{x} | \mathbf{y}_a, A_{g,a}\}$ as deviation from MMSE loss.

 $\mathcal{L}_{\text{MS}}(\mathbf{y}, f) = \mathbb{E} \left\| (\mathbf{y} - A_g \mathbb{E} \{ \mathbf{x} \mid \mathbf{y}_a, A_{g,a} \}) - A_g \ r(\mathbf{y}_a, A_{g,a}) \right\|^2$ $= \mathbb{E} \left\| \mathbf{y} - A_g \mathbb{E} \{\mathbf{x} \vert \; \mathbf{y}_a, A_{g,a} \} \right\|^2$ $+ \mathbb{E} \Vert A_g \ r(\mathbf{y}_a, A_{g,a})$ $\mathbb{E}\left[(\mathbf{y} - A_g \mathbb{E} \{\mathbf{x} \mid \mathbf{y}_a, A_{g,a}\})^{\top} \right]$ $A_g \ r(\bm{y}_a, A_{g,a})$ $\overline{\mathbb{1}}$ (1) = irreducible error (const.); (2) = deviation from optimal 2 (= 0 if $\mathbb{E}_{A_{\mathcal{G}}|A_{\mathcal{G},a}} A_{\mathcal{G}}^{\top} A_{\mathcal{G}}$ full rank) $=$ correlation term $= 0$ 3 3

Final thought: if there is known Gaussian noise, then we can simply replace $\mathcal{L}_{MS}(y, f)$ by its SURE equivalent or Noisier2Noise…

Using All Measurements

Can we use all measurements? **Multi Operator Imaging (MOI)** [Tachella et al., 2022]

$$
\mathcal{L}_{MOI}(\mathbf{y}, f) = \left| |\mathbf{y} - A_g f(\mathbf{y}, A_g)| \right|^2 + \sum_{s} \left| |f(A_s \hat{\mathbf{x}}, A_s) - \hat{\mathbf{x}}| \right|^2 \quad \text{with } \hat{\mathbf{x}} = f(\mathbf{y}, A_g)
$$

Can be replaced by SURE, Enforces $f(A_g \mathbf{x}, A_g) \approx f(A_s \mathbf{x}, A_s)$
R2R, etc.

- The trivial solution $f(y, A) = A^{\dagger}y$ is not generally a minimizer
- Motivated by identifiability theory of low dimensional set (more later)
- Does not have the rank $(E_{A_g|A_{g,a}} A_g^{\mathsf{T}} A_g) = n$ constraint

Inpainting

- U-Net network
- CelebA dataset
- A_g are inpainting masks

Magnetic Resonance Imaging

- Unrolled network
- FastMRI dataset (single coil)
- A_q are subsets of Fourier measurements (x4 downsampling)

References

The full reference list for this tutorial can be found here:

<https://tachella.github.io/projects/selfsuptutorial/>

