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In this first part, we will focus on ‘denoising’ problems

𝒚 = 𝐴𝒙 + 𝝐

where 𝐴 ∈ ℝ𝑚×𝑛 is invertible (and thus 𝑚 ≥ 𝑛).

• We focus on 𝑨 = 𝑰 for simplicity.

• All methods in this part can be extended to any invertible 𝑨.

Denoising problems
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ℒsup 𝒙, 𝒚, 𝑓 = ||𝒙 − 𝑓 𝒚 ||2

Unsupervised Risk Estimators

key term to approximate!

= 𝒇 𝒚 ⊤𝝐

= ||𝒚 − 𝑓 𝒚 ||2 + 2𝑓(𝒚)⊤ 𝒚 − 𝒙 + const.

Supervised loss

Goal: build a self-supervised loss ℒself such that

𝔼𝒚 ℒself 𝒚, 𝑓 = 𝔼𝒙,𝒚 ℒsup 𝒙, 𝒚, 𝑓 + const.

Measurement

consistency
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Mallows 𝑪𝒑 [Mallows, 1973], Noise2Noise [Lehtinen, 2018]

• Independent pairs 𝒚𝑎 = 𝒙 + 𝝐𝑎 and 𝒚𝑏 = 𝒙 + 𝝐𝑏 with 𝝐𝑎 , 𝝐𝑏 independent 

• 𝔼𝝐𝒃|𝒙𝝐𝒃 = 𝟎

ℒ𝑁2𝑁 𝒚, 𝑓 = || 𝒚𝑏 − 𝑓 𝒚𝑎 ||2

Noise2Noise

• Also works for any noise distribution with 𝔼𝒚𝒃|𝒙 𝒚𝒃 = 𝒙

• Limitation: observing independent copies is often impossible

𝔼𝒚𝑏|𝒙 𝑓 𝒚𝑎
⊤ 𝒚𝒃 − 𝒙 = 𝑓 𝒙 + 𝝐𝑎 𝔼 𝝐𝑏 = 0

=0
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Noisier2Noise

Recorrupted2Recorrupted [Pang et al., 2021], Coupled Bootstrap [Oliveira et al., 2022], 

Noisier2Noise [Moran et al., 2020].

ℒ𝑅2𝑅 𝒚, 𝑓 = 𝔼𝝎|| 𝒚𝑏− 𝑓 𝒚𝑎 ||2

Proposition: Let 𝒚 ∼ 𝑁 𝒙, 𝐼𝜎2 and define 

𝒚𝑎 = 𝒚 + 𝛼𝝎
𝒚𝑏 = 𝒚 −𝝎/𝛼

where 𝝎 ∼ 𝑁 𝟎, 𝐼𝜎2 and 𝛼 ∈ ℝ, then 𝒚𝑎 and 𝒚𝑏 are independent random variables (fixed 𝒙).

• Price to pay: SNR(𝒚𝑎) < SNR(𝒚)

• Trick can be extended to Poisson noise [Oliveira et al., 2023]

• At test time, 𝑓test(𝒚) =
1

𝑁
σ𝑖 𝑓 𝒚 + 𝛼𝝎𝑖 with 𝝎𝑖 ∼ 𝒩(𝟎, 𝐼𝜎2)



6

Stein’s Unbiased Risk Estimator

𝔼𝒚|𝒙 𝒚 − 𝒙 ⊤𝑓 𝒚 = 𝔼𝒚|𝒙 𝜎
2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

ℒ𝑆𝑈𝑅𝐸 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

• Stein’s lemma [Stein 1974] : Let 𝒚|𝒙 ∼ 𝒩 𝒙, 𝐼𝜎2 , 𝑓 be weakly differentiable, then 

Measurement

consistency 

Degrees of freedom [Efron, 2004] 

• Hudson’s lemma [Hudson 1978] extends this result for the exponential family (eg. Poisson Noise)

• Beyond exponential family: Poisson-Gaussian noise [Le Montagner et al., 2014]

[Raphan and Simoncelli, 2011]
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Stein’s Unbiased Risk Estimator

Monte Carlo SURE [Efron 1975, Breiman 1992, Ramani et al., 2007]

SURE’s divergence is generally approximated as  

෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚 ≈
𝝎

𝛼

⊤

𝑓 𝒚 − 𝑓 𝒚 + 𝝎𝛼

• Noisier2Noise is equivalent to SURE when 𝛼 → 0 [Oliveira, 2022].

where 𝛼 > 0 small, 𝝎 ∼ 𝒩(𝟎, 𝐼)
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Stein’s Unbiased Risk Estimator

The solution to SURE is Tweedie’s Formula

• Noise2Score [Kim and Ye, 2021] learns ∇ log 𝑝𝒚 𝒚 from noisy data + denoises with Tweedie.

• Key formula behind diffusion models, which can be trained self-supervised [Daras et al., 2024]

argmin 𝔼𝒚 || 𝑓 𝒚 − 𝒚 − 𝜎2∇ log 𝑝𝒚 𝒚 ||2

𝑓

argmin 𝔼𝒚|| 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚
𝑓

argmin 𝔼𝒚 || 𝒚 − 𝑓 𝒚 ||2 − 2𝜎2෍

𝑖

𝑓 𝒚
𝛿 log 𝑝𝒚(𝒚)

𝛿𝑦𝑖𝑓
Complete squares

Integration by parts

𝑓(𝒚) = 𝒚 + 𝜎2∇ log 𝑝𝒚 𝒚
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Summary So Far

Train

Eval

Test

Eval

Single

𝒚
MMSE

optimal

Unknown

noise

Noise2Noise 1 1

Noisier2Noise 1 >1

SURE 2 1

Noise2Void 1 1

Blind Spot 1 >1

Autoencoders 1 1

If we have a single 𝒚 and don’t know the noise distribution?
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Cross-Validation Methods

• SURE’s perspective:

• These methods are not MMSE optimal

• How to remove dependence on 𝑦𝑖: training or architecture

ℒ𝑆𝑈𝑅𝐸 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

𝔼𝒚|𝒙 ෍

𝑖=1

𝑛

𝑓𝑖(𝒚) 𝑦𝑖 − 𝑥𝑖 =

Assumption: 𝑓𝑖 does not depend on 𝑦𝑖, that is 
𝛿𝑓𝑖

𝛿𝑦𝑖
= 0. Decomposable noise 𝑝 𝒚 𝒙 = ς𝑝(𝑦𝑖|𝑥𝑖)

ℒ𝐶𝑉 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 subject to  
𝛿𝑓𝑖

𝛿𝑦𝑖
(𝒚) = 0 ∀𝑖

෍

𝑖=1

𝑛

𝔼𝒚−𝑖|𝒙 𝑓𝑖(𝒚−𝑖) 𝔼𝑦𝑖|𝑥𝑖 𝑦𝑖 − 𝑥𝑖 = 0

=0 
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Measurement Splitting

Noise2Void [Krull et al., 2019], Noise2Self [Batson, 2019]

• During training flip centre pixel

• Computes loss only on flipped pixels

Neighbor2Neighbor [Huang, 2023]

• Use different subsampling as input and target

• Assumes scale invariance

Cross-validation [Efron, 2004]: random split 𝒚 =
𝒚𝑎
𝒚𝑏

at each iteration 

ℒ𝑁2𝑉 𝒚, 𝑓 = 𝔼𝑎,𝑏|| 𝒚𝑏 − diag 𝒎𝑏 𝑓 𝒚𝑎 ||2

where 𝒎𝑏 ∈ 0,1 𝑛 masks out the pixels in 𝒚𝑎.



12

Measurement Splitting

At test time, 𝑓 𝒚 is evaluated as 

1. Test 𝑓 as trained (expensive)

𝑓test(𝒚) =
1

𝑁
σ𝑖𝑀 𝑓 𝒚𝒂𝒊 with 𝒚𝒂𝒊 ∼ 𝑝 𝒚𝒂 𝒚 and 𝑀 = σ𝑖

𝑁 diag (𝒎𝑏,𝑖)
−1

2. Assume good generalization of 𝑓 (cheap)

• 𝑓test 𝒚 = 𝑓 𝒚𝒂 with 𝒚𝒂 ∼ 𝑝 𝒚𝒂 𝒚

• 𝑓test 𝒚 = 𝑓 𝒚
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Blind Spot Networks

Blind spot networks [Laine et al., 2019], [Lee et al., 2022]

• Convolutional architecture that doesn’t ‘see’ centre pixel by construction 

ℒBS 𝒚, 𝑓BS = || 𝒚 − 𝑓BS 𝒚 ||2



14

Autoencoders

Assume

• 𝑓 has a strong bottleneck

ℒ𝐴𝐸 𝒚, 𝑓 = || 𝒚 − 𝑓AE 𝒚 ||2

Autoencoders

𝑑

ℝ𝑘ℝ𝑛 ℝ𝑛

𝑓AE = 𝑑 ⋅ 𝑒

𝑒 𝑑

• Noise distribution is ‘high-dimensional’ whereas signal distribution is ‘low-dimensional’

• Example: linear ortho denoiser 𝑓 𝒚 = 𝑀𝒚, then σ𝑖
𝛿𝑓𝑖

𝛿𝑦𝑖
𝒚 = tr 𝑀 = 𝑘

σ𝑖
𝛿𝑓𝑖

𝛿𝑦𝑖
𝒚 ≈ 𝑂(𝑘) ≪ 𝑛 is small
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Summary

Train

Eval

Test

Eval

Single

𝒚
MMSE

optimal

Unknown

separable 

noise

Unknown

coloured

noise

Noise2Noise 1 1

Noisier2Noise 1 >1

SURE 2 1

Noise2Void 1 1

Blind Spot 1 >1

Autoencoders 1 1

No free lunch: less assumptions about noise = less optimal estimator
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For 𝐴 ≠ 𝐼, most estimators can be adapted to approximate

𝔼𝒙,𝒚 ||𝐴
†𝐴(𝒙 − 𝑓 𝒚 )||2

where 𝐴† is the pseudoinverse of 𝐴.

For example, GSURE [Eldar, 2008] writes for Gaussian noise

Beyond Denoising

ℒ𝐺𝑆𝑈𝑅𝐸 𝒚, 𝑓 = ||𝐴†𝒚 − 𝐴†𝐴𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿 𝐴†𝐴 ⋅ 𝑓
𝑖

𝛿𝑦𝑖
𝒚
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1. If 𝐴 is invertible, we have 𝐴†𝐴 = 𝐼

2. If 𝐴 is not invertible, 𝔼𝒙,𝒚 ||𝐴
†𝐴 𝒙 − 𝑓 𝒚 ||2 ≠ 𝔼𝒙,𝒚 ||𝒙 − 𝑓 𝒚 ||2

In this case, the risk does not penalise 𝑓(𝒚) in the nullspace of 𝑨!

Incomplete Measurements?

𝒇

𝐴
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