



# Self Supervised Learning Methods for Imaging Part 1: Introduction

Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

### **Tutorial Schedule**

PART I: Introduction to Imaging Inverse Problems

Inverse problem framework; ill-posed problems; dimensionality; noise; deep learning solutions; supervised versus unsupervised; learning vs inductive bias.

PART II: Unsupervised methods for Invertible Forward Operator

Blind Denoising; SURE; Noise2X; denoising autoencoders; measurement splitting; GSURE.

PART III: Learning from multiple operators

The impossibility of learning from an incomplete measurement operator; learning from multiple operators; Noise2Noise revisited; measurement splitting revisited; multi-operator consistency; handling noise.

PART IV: Unsupervised methods for ill-conditioned inverse Problems with a single operator Exploiting Invariance and symmetries; equivariant and non-equivariant operators; enforcing equivariance;

handling noise

PART V: Identifiability Theory

Identifiability and dimension; learning with noise; learning from incomplete measurements; Cramer-Wold theorem; generic identifiability

PART VI: Summary and Future Perspectives

### The Inverse problem

**Goal:** estimate signal *x* from *y* 

measurements, 
$$y = A(x) + \epsilon \leftarrow n \operatorname{rise}/e \operatorname{ror}$$
  
 $\epsilon \operatorname{IR}^{n}$ 
 $f_{\text{Physics}}$ 

We will focus on linear problems where the forward operator A is a matrix



# Why it is hard to invert?

Measurements are usually corrupted by noise, e.g.

 $y = Ax + \epsilon$ 

Can be additive, as above, or more complex, e.g. Poisson.

- Often, we do not know the exact noise distribution
- The forward operator may be poorly conditioned



# Why it is hard to invert?

Even in the absence of noise, A may not be invertible, giving infinitely many  $\hat{x}$  consistent with y:

$$\widehat{\boldsymbol{x}} = A^{\dagger}\boldsymbol{y} + \boldsymbol{v}$$

where  $A^{\dagger}$  is the pseudo-inverse of A and v is any vector in nullspace of A

Unique solution only possible if set of signals x is low-dimensional



# Low Dimensional Signal Models

**Idea:** assume approximate low dimensional image model:

 $\dim \mathcal{X} = k \ll n$ 

**Examples:** sparsity, low-rank, manifolds

**Signal Embedding**: if  $m \ge O(k)$  then the problem is approximately one-to-one and (nonlinearly) invertible

This is the principle behind compressed sensing, but is implicit in most inverse imaging problems



# Regularised reconstruction

**Idea:** define a loss  $\rho(x)$  that promotes plausible reconstructions

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left| |\boldsymbol{y} - A\boldsymbol{x}| \right|^2 + \rho(\boldsymbol{x})$$

**Examples:** total-variation, sparsity, etc.

**Disadvantages:** hard to define a good  $\rho(x)$  in real world problems, loose with respect to the true signal distribution



### fastMRI Advantages: State-of-the-art reconstructions ٠ Accelerating MR Imaging with AI Once trained, $f_{\theta}$ is easy to evaluate ٠ Deep network Total variation (34.5 dB) (28.2 dB) Ground-truth

x8 accelerated MRI [Zbontar et al., 2019]

**Idea:** use training pairs of signals and measurements to directly learn the inversion function



#### Many DNN architecture choices, e.g.



Back projected U-Net:  $\hat{x} = f(A^{T}y)$ , e.g. [Jin, 2017]

End-to-end Training Input  $h^1(\cdot; \theta^1)$   $h^2(\cdot; \theta^2)$   $\cdots$  Output Interpretable Layers

Unrolled networks:  $\hat{x} = f(y, A)$ , e.g. [Monga, 2020]

But also DnCNNs, DRUNet, SCUNet, DEQ, restormer, SwinIR, DiffPIR...

Here our focus will be on learning that is typically architecture agnostic

Main disadvantage: reference data can be expensive or impossible to get.

- Medical and scientific imaging
- · Problems which we already 'solved'
- Distribution shift



• Raises the question:

Can AI be used for data-driven knowledge discovery in imaging?

# AI for Knowledge Discovery?

#### Guardian Black hole picture captured for first time in space breakthrough



### **Guardian**

DeepMind uncovers structure of 200m proteins in scientific leap forward

# Learning vs Inductive Bias

**Inductive bias:** all networks carry inductive bias

Deep Image Prior [Ulyanov 2018]

- Architecture *implicitly* encodes "preferred" images
- Minimise data consistency with early stopping

$$\underset{f}{\operatorname{argmin}} \|\boldsymbol{y} - Af(\boldsymbol{y})\|^2$$

#### Hard to categorise:

- Inductive bias?
- Learning non-local structure [Tachella 2021]?



#### Deep Image Prior [Ulyanov 2018]

# Learning vs Pre-Trained

**Exploiting Deep Pre-Trained Denoisers:** Exploit powerful pretrained DNN denoisers,  $D(u, \sigma)$ , e.g., [Zhu, 2023]

Plug and Play methods: e.g. PnP proximal gradient descent

$$\boldsymbol{u}_{k+1} = D(\boldsymbol{x}_k - \gamma A^{\mathrm{T}}(A\boldsymbol{x}_k - \boldsymbol{y}), \sigma)$$

**Conditional Diffusion models:** use pre-trained denoiser in reverse SDE to attempt to sample conditional distribution



Generally pre-trained but can leverage self-supervised denoisers (see part III)

### References

The full reference list for this tutorial can be found here:

https://tachella.github.io/projects/selfsuptutorial/

