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PART I: Introduction to Imaging Inverse Problems
Inverse problem framework; ill-posed problems; dimensionality; noise; deep learning solutions; supervised 
versus unsupervised; learning vs inductive bias.

PART II: Unsupervised methods for Invertible Forward Operator 
Blind Denoising; SURE; Noise2X; denoising autoencoders; measurement splitting; GSURE. 

PART III: Learning from multiple operators

The impossibility of learning from an incomplete measurement operator; learning from multiple operators; 
Noise2Noise revisited; measurement splitting revisited; multi-operator consistency; handling noise. 

PART IV: Unsupervised methods for ill-conditioned inverse Problems with a single operator
Exploiting Invariance and symmetries; equivariant and non-equivariant operators; enforcing equivariance; 
handling noise 

PART V: Identifiability Theory
Identifiability and dimension; learning with noise; learning from incomplete measurements; Cramer-Wold
theorem; generic identifiability 

PART VI: Summary and Future Perspectives



3

The Inverse problem

Goal: estimate signal 𝒙 from 𝒚

𝒚 = 𝐴(𝒙) + 𝝐

We will focus on linear problems where the forward operator 𝐴 is a matrix 
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Why it is hard to invert?

Measurements are usually corrupted by noise, e.g.

𝒚 = 𝐴𝒙 + 𝝐

Can be additive, as above, or more complex, e.g. Poisson. 

• Often, we do not know the exact noise  

distribution

• The forward operator may be poorly 

conditioned
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Why it is hard to invert?

Even in the absence of noise, 𝐴 may not be invertible, giving infinitely 

many ෝ𝒙 consistent with 𝒚:

ෝ𝒙 = 𝐴†𝒚 + 𝒗

where 𝐴† is the pseudo-inverse of 𝐴 and 𝒗 is any vector in nullspace of 𝐴

Unique solution only possible if set of signals 𝒳 is low-dimensional 

reconstruct



Low Dimensional Signal Models

Low dimensional 

image model

Forward operator 

(observation)

nonlinear 

approximation 

(reconstruction)

Idea: assume approximate low dimensional image 

model:

dim𝒳 = 𝑘 ≪ 𝑛

Examples: sparsity, low-rank, manifolds

Signal Embedding: if m ≥ 𝒪(𝑘) then the problem is 

approximately one-to-one and (nonlinearly) invertible

This is the principle behind compressed sensing, but 

is implicit in most inverse imaging problems  
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Regularised reconstruction

Idea: define a loss 𝜌 𝒙 that promotes plausible reconstructions

ෝ𝒙 = argmin 𝒚 − 𝐴𝒙
2
+ 𝜌(𝒙)

Examples: total-variation, sparsity, etc.

Disadvantages: hard to define a good 𝜌 𝒙 in real world problems, 

loose with respect to the true signal distribution

𝒙



9

Advantages: 

• State-of-the-art reconstructions

• Once trained, 𝑓𝜃 is easy to evaluate

x8 accelerated MRI [Zbontar et al., 2019]

Deep network 

(34.5 dB)Ground-truth

Total variation

(28.2 dB)

Learning approach
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Learning approach

Idea: use training pairs of signals and measurements to directly learn 

the inversion function

𝑓

input target input target

…
supervised

dataset

argmin
𝑓

𝔼𝒙,𝒚 𝒙 − 𝑓 𝒚 2
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Learning approach

Many DNN architecture choices, e.g.

But also DnCNNs, DRUNet, SCUNet, DEQ, restormer, SwinIR, DiffPIR…

Here our focus will be on learning that is typically architecture agnostic

Unrolled networks: ෝ𝒙 = 𝑓(𝒚, 𝐴), e.g. [Monga, 2020] Back projected U-Net: ෝ𝒙 = 𝑓(𝐴⊤𝒚), e.g. [Jin, 2017] 

𝐴𝑇 outputinput
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Learning approach

Main disadvantage: reference data can be expensive or impossible to get. 

• Medical and scientific imaging

• Problems which we already ‘solved’

• Distribution shift

• Raises the question: 

Can AI be used for data-driven knowledge discovery in imaging?

train test?
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AI for Knowledge Discovery?
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Learning vs Inductive Bias
Inductive bias: all networks carry inductive 

bias 

Deep Image Prior [Ulyanov 2018] 

• Architecture implicitly encodes “preferred” 

images

• Minimise data consistency with early stopping

argmin
𝑓

𝒚 − 𝐴𝑓 𝒚 2

Hard to categorise: 

• Inductive bias? 

• Learning non-local structure [Tachella 2021]? Deep Image Prior [Ulyanov 2018] 
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Learning vs Pre-Trained
Exploiting Deep Pre-Trained Denoisers: Exploit powerful pretrained DNN 

denoisers, D(𝒖, 𝜎), e.g., [Zhu, 2023]

Plug and Play methods: e.g. PnP proximal gradient descent

𝒖𝑘+1 = D(𝒙𝑘 − 𝛾𝐴T 𝐴𝒙𝑘 − 𝒚 , 𝜎)

Conditional Diffusion models: use pre-trained denoiser in reverse SDE to 

attempt to sample conditional distribution

Generally pre-trained but can leverage self-supervised denoisers (see part III)
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