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Problem setup Theory Experiments
We consider incomplete linear observations of the form Signal Recovery: is the reconstruction function f:y - x MNIST dataset:
one-to-one with known X7 * Red line: sufficient condition m > k + n/G with k =~ 12 [2]
Vi = Agixi  Test PSNR in dB, f is a fully-connected network
Theorem [1]: A signhal x belonging to a known set X
. with box-counting dimension k < n can be uniguely Compressed Sensing Inpainting
* Measurementy; € R recovered from the measurement y = Ax with almost 40 - 40
. Signal x;i €EX C R" every A € RMXN if 16 16
» Incomplete linear operators A, € R™ " with g; € {1, ..., G} m > 2k. 30 50
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Most models are low-dimensional: Sparse dictionaries, manifold models, generative Q} 20 U 20
Goal: Learn the reconstruction function f:y » x from data models, etc. ,
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. g . . . . O
T AYY. Model Identification: cag we identify X from 100 200 200 200 100 500 300 400
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Necessary Condition
Proposition: Identifying X from observed measurement

G : : :
sets {Y, = Agx}g=1 with 44, ..., A; € R™*™ possible only if

Image Inpainting with CelebA dataset
 m=n/2,G =40, fis aU-Net

- ATy AmbientGAN [3]| MOI (ours) Supervised
A
_— A . TestPSNR | 9.05+1.65 | 29.57+1.24 |34.05+3.77 | 36.21+3.76
Ag
Examples dthus. if m > n/C - -
and thus, it m = n/G. Accelerated MRI with FastMRI dataset
* Image inpainting - m=n/4, G =40, f is an unrolled prox. grad descent network
V1 Y2 V3 Sufficient Condition
Theorem: ldentifying a set X with box-counting ATy Meas. Splitting [4] | MOI (ours) Supervised
. : G .
dimension k < n from observed sets {Yg = A, X} _ is TestPSNR | 25.77 +2.71 | 29.47 +2.02  |31.39+2.17 | 32.42 + 2.44
possible by almost every A4, ..., A; € R™" if
m>k+n/G.
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consistency y = A, f (v, 44) f(Agx,Ay) = f(Asx, Ag) forall s # g




