Unsupervised Learning From Incomplete Measurements for Inverse Problems

Problem setup

We consider incomplete linear observations of the form

$$y_i = A_{g_i} x_i$$

- Measurement $y_i \in \mathbb{R}^m$
- Signal $x_i \in \mathcal{X} \subset \mathbb{R}^n$
- Incomplete linear operators $A_{g_i} \in \mathbb{R}^{m \times n}$ with $g_i \in \{1, ..., G\}$

Goal: Learn the reconstruction function $f: y \mapsto x$ from data

- Supervised dataset $\mathfrak{D}_s = \{(x_i, y_i, A_{g_i})\}_{i=1}^N$ expensive or hard to obtain!
- Unsupervised dataset: $\mathfrak{D}_u = \{(y_i, A_{g_i})\}_{i=1}^N$

Examples

• Image inpainting

• Accelerated magnetic resonance imaging

argmin

Julián Tachella, CNRS & ENSL Dongdong Chen, *Edinburgh University* Mike Davies, *Edinburgh University*

Theory

Signal Recovery: is the reconstruction function $f: y \mapsto x$ one-to-one with known χ ?

Theorem [1]: A signal x belonging to a known set Xwith box-counting dimension k < n can be uniquely recovered from the measurement y = Ax with almost every $A \in \mathbb{R}^{m \times n}$ if m > 2k.

Most models are low-dimensional: Sparse dictionaries, manifold models, generative models, etc.

Model Identification: can we identify \mathcal{X} from measurement data alone?

Necessary Condition

Proposition: Identifying \mathcal{X} from observed measurement sets $\{\mathcal{Y}_g = A_g \mathcal{X}\}_{g=1}^G$ with $A_1, \dots, A_G \in \mathbb{R}^{m \times n}$ possible only if

and thus, if $m \ge n/G$.

Sufficient Condition

Theorem: Identifying a set \mathcal{X} with box-counting dimension k < n from observed sets $\{\mathcal{Y}_g = A_g \mathcal{X}\}_{g=1}^G$ is possible by almost every $A_1, ..., A_G \in \mathbb{R}^{m \times n}$ if

m > k + n/G.

Test PS

Test PS

Proposed Self-Supervised Training Loss

$$n \sum_{i} \left| \left| y_{i} - A_{g_{i}} f(y_{i}, A_{g_{i}}) \right| \right|^{2} + \sum_{s} \left| \left| f(A_{s} \hat{x}_{i}, A_{s}) - \hat{x}_{i} \right| \right|^{2} \text{ with } \hat{x}_{i} = f(y_{i}, A_{g_{i}})$$

Enforces measurement consistency $y = A_q f(y, A_q)$

Enforces cross-operator consistency $f(A_a x, A_a) = f(A_s x, A_s)$ for all $s \neq g$

Experiments

MNIST dataset:

• Red line: sufficient condition m > k + n/G with $k \approx 12$ [2] • Test PSNR in dB, f is a fully-connected network

Image Inpainting with CelebA dataset

• m = n/2, G = 40, f is a U-Net

	$A^{\dagger}y$	AmbientGAN [3]	MOI (ours)	Supervised
SNR	9.05 <u>+</u> 1.65	29.57 <u>+</u> 1.24	34.05 ± 3.77	36.21 <u>+</u> 3.76

Accelerated MRI with FastMRI dataset

• m = n/4, G = 40, f is an unrolled prox. grad descent network

	$A^{\dagger}y$	Meas. Splitting [4]	MOI (ours)	Supervised
NR	25.77 <u>+</u> 2.71	29.47 <u>+</u> 2.02	31.39 ± 2.17	32.42 <u>+</u> 2.44

References

- [1] Sauer, Yorke and Casdagli (1991). "Embedology." In Journal of statistical Physics. [2] Hein and Audibert (2005). "Intrinsic dimensionality estimation of submanifolds in \mathbb{R}^d ." In International Conference on Machine learning.
- [3] Bora, Price and Dimakis (2018). "AmbientGAN: Generative models from lossy measurements." In International Conference on Learning Representations.
- [4] Yaman, Hosseini, Moeller, Ellermann, Ugurbil and Akçakaya. (2020) "Selfsupervised learning of physics-guided reconstruction neural networks without fully sampled reference data." In Magnetic Resonance in Medicine.

Project webpage

