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The Inverse problem

Goal: estimate signal x from y
scgnu‘. € |]’(“
peo.s\l"—x‘“"-{» y = A(xé & neisc/e o
¢ & ,
Physics

We will focus on linear problems where the forward operator A is a matrix



Examples

reconstruction

Magnetic Resonance

. Source:
Imaging (MR|) recover Brian Hargreaves
A: undersampled Fourier
models
M87*  April 11, 2017
Black Hole Imaging Th sical
e Astrophysi
A: spatial-frequency recover Journal Letters,
e.g. Event Horizon Telescope vol. 875, no. L, 2019.
(EHT)
50 pas
Cryogenic electron Covid-19 virus' stru
ovid-19 virus cture
microscopy (Cryo-EM) recover

A: 2D projections of protein
particles

D. Wrapp et al. Science,
vol. 367, no. 6483, 2020.




Why it is hard to invert?

Measurements are usually corrupted by noise, e.g.
y=Ax+¢€
Can be additive, as above, or more complex, e.g. Poisson.

« Often, we do not know the exact noise
distribution

« The forward operator may be poorly
conditioned

with noise



Why it is hard to invert?

Even in the absence of noise, A may not be invertible, giving infinitely
many X consistent with y:

x=Aty +

where AT is the pseudo-inverse of A and v is any vector in nullspace of 4

Unique solution only possible if set of signals X is low-dimensional




Learning approach

ldea: use training pairs of signals and measurements to directly learn
the inversion function
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Learning approach

Advantages: fastMRI
e State-of-the-art reconstructions

 Once trained, fy is easy to evaluate Accelerating MR Imaging with Al

Total variation Deep network
Ground-truth (28.2 dB) (34.5dB)

x8 accelerated MRI [Zbontar et al., 2019]



Learning approach

Many architecture choices, e.g.
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Back projected U-Net: X = f(A"y), e.g. [Jin, 2017] Unrolled networks: X = f(y, A), e.g. [Monga, 2020]

But also DNnCNNs, DRUNet, SCUNet, DEQ, restormer, SwinIR, DIiffPIR...

Here our focus will be on learning that is typically architecture agnostic



Learning approach

Main disadvantage: Obtaining training signals x; can be expensive or impossible.

* Medical and scientific imaging

. : . ) e oo i’;ﬂ*,iﬂfi}ﬂ‘f}"’: ,ur'f Degraded image

« Distribution shift [Belthangady & Royer, 2019] —/ Rihiatod £ B
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Al for Knowledge!
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Black hole picture captured for first

time in space breakthrough




What this talk is not about

Autoregressive models: LLM pretraining on an autoregressive task.

Self-supervised learning for feature learning: Sim2Sim, masked
autoencoders, DINOvZ2,3, etc. Focus on learning features for
downstream tasks.

Diffusion models and PnP: require pre-trained denoiser/scores with
ground-truth data
 The methods presented can be used to train denoisers without ground-truth!



Purpose of this talk

How can we learn f from measurement {y;}N_,
data alone?

1. Noisy: y=x+¢€

2. Incomplete and noisy: y = Ax + €

N
argmin z Ly f)
=




Best we can expect

We focus on ¥, loss and minimum mean squared error estimators
(MMSE)

fr= argmfin]Ex,y ||x—f(y)||2

= (*(y) = E{x|y)

« Other estimators might be preferred, eg. perceptual
[Blau and Michaeli, 2018]



Self-supervised learning

Approximating the supervised loss:

1. Unbiased estimator
[Ey Ly, f) = IEx,y” fy) — x”Z

— * — ]E
2. Same minimizer ) {x|y}

argn;in Ey L(y,f) = argr]pin Exyll f(¥) — x||* |

3. Unbiased estimator under constraints

Ey L3, f) = Ex, |l f() — x| for certain f # E{x|y}



Part 2: Learning from noisy data




Denoising problems

In this part, we will focus on ‘denoising’ problems
y=Ax + €

where A € R™*" is invertible (and thus m > n).

 We focus on A = I for simplicity.

« All methods in this part can be extended to any invertible A.



Self-supervised risk estimators

Supervised loss

Loy, ) =1lx=FfDI?= ||y = FDII? + 2f(»)T (y — x) + const.

1§ /U J

Y Y
Measurement ey term to approximate!
consistency =f(y)Te

Naive loss doesn’t work!

Luc. ) =y = fOII?
= )=y



Noise2Noise

Mallows C,, [Mallows, 1973], NoiseZ2Noise [Lehtinen, 2018]

* Independent pairsy, = x+ €, and y, = x + €, with €, €, independent
II361,|be =0

LNoiseZNoise(yarybrf) =|lyp — f(ya)llz

=0

Ey, e fF )T (7 — %) = F(x + €, E €y = 0

* Also works for any noise distribution with E,,  yp = x



Noise2Noise

target

estimate

input

target

Lyon(, f)

input

-

target

ihpUt

Dataset of
noisy pairs

Not useful for the microscopy example!




Recorrupted2Recorrupted

Recorrupted2Recorrupted [Pang et al., 2021], Coupled Bootstrap [Oliveira et al., 2022],
Noisier2Noise [Moran et al., 2020].

Proposition: Let y ~ N(x,102) and define

1_
Ya=y+ [ w

y y.(1—a)

J’ba 0

where w ~ N(0,152) and « € R, then y, and y, are independent random variables (fixed x).

Lror@, ) =Epll yo— Fa) |12

* Price to pay: SNR(y,) < SNR(y)
« Attest time, f*st(y) = %&f(y + /1?7“ wi> with w; ~ N (0,102)



Recorrupted2Recorrupted

» Can be extended to other noise distributions [Monroy, Bacca and Tachella, CVPR 2025]

Model Gaussian Poisson Gamma
y ~ Nz, 2) z~P(x/y),y ="z y~ G, {/x)
Y, Y =Y+ /1w, ylzyl__ﬁ/awa Yy, =yo(l-w)/(1-aq)
w ~ N(0, E) w ~ Bin(z, ) w ~ Beta(fa, £(1 — «))

p(y[x)
NEF Family 4

Poisson
3

- POy, @)
# Binomial ® # q
Recorruption

Restoration Model

[ l_a -_" — Ler2r s 1)

Recorruption




Stein’s Unbiased Risk Estimator

- Stein’s lemma [Stein 1974] : Let y|x ~ N (x,102), f be weakly differentiable, then

ofi
By (7 = 0770 = By o? ) 5—;@)

ofi
Loune ) = 11y = FOIP +207 . )
\_ J \_T " )

Y Y

Measurement Degrees of freedom [Efron, 2004]
consistency

 Hudson’s lemma [Hudson 1978] extends this result for the exponential family (eg. Poisson Noise)
« Beyond exponential family: Poisson-Gaussian noise [Le Montagner et al., 2014]
[Raphan and Simoncelli, 2011]



Stein’s Unbiased Risk Estimator

Monte Carlo SURE [Efron 1975, Breiman 1992, Ramani et al., 2007]

SURE’s divergence is generally approximated as

of; ~wT
i 5—%_(3') ~— (FO) - f(y + @wa))

where a > 0 small, ® ~ N (0,])

* Noisier2Noise is equivalent to SURE when a — 0 [Monroy Bacca and Tachella, CVPR 2025].



Stein’s Unbiased Risk Estimator

The solution to SURE is Tweedie’s Formula

Sfi
argr;lin Eylly — fOII* + 20225—5(3')

Integration by parts

ol
argmin By [y = FO)I ~ 207 ) f) 2

f

) Complete squares

argmin E,, || f(y) —y — c*Vlogp,(») ||?
f

=) f(y)=y+02Vlogp,(y)

« Noise2Score [Kim and Ye, 2021] learns Vlogp,(y) from noisy data + denoises with Tweedie.
« Key formula behind diffusion models, which can be trained self-supervised [Daras et al., 2024]



Summary So Far

Train  Test Single MMSE Unknown

Eval Eval y optimal noise

Noise2Noise 1 1 o

R2R 1 >1 Q
SURE 2 1 v &

If we have a single y and don’t know the noise distribution?




UNSURE

Assumption: Let y|x ~ N(x,162), % unknown

UNSURE [Tachella et al., ICLR 2025]

. 5fi
Lonsure, ) = |1 y = f)II? subject to By %32 (y) = 0

) - 6 .
« SURE'’s perspective: LsureW ) =11y —=FII? + 2@){3})
i

« Not MMSE optimal (but almost)




UNSURE

* |In practice, we use Lagrange multipliers
min max E, || y — f(D)]]* + 2772%(3')
foom Y ~ O
* — A N 1 -1
= ) =y+17Viegp,(y) 4= (;IEy I|V10gpy(y)llz)

« EXxpected error

MSE?

o2

_ MMSE

1 p,

1
E[Ex,y”f*(}’)_x”:UZ( 1>zMMSE+

« UNSURE can be extended to unknown noise covariance and Poisson Gaussian noise



Experiments
Measurement . PGUNSURE |

Real data experiments

* Cryo electron microscopy images
« Extremely low SNR
* Approx. Poisson-Gaussian noise




Cross-Validation Methods

Assumption: f; does not depend on y;, that is g—f]‘: = 0. Decomposable noise p(y|x) = [Ip(y;|x;)
=0
A

- - f" N
By ) OO =50 = ) By e fily-) By, 0 = %) = 0
i=1 i=1

. 5fi .
Lo f) = 11y = F)II? subjectto 1 (y) =0 vi,y

) H 5 .
* SURE'’s perspective: Lsure @, ) =11y = FDII* + 207 (y)
, l
l

» These methods are not MMSE optimal
« How to remove dependence on y;: training or architecture




Measurement Splitting

Ya

Cross-validation [Efron, 2004]: random split y = Y

] at each iteration

Loy, f) = Eqpll yp — diagm,, f(}’a)”Z

where m, € {0,1}" masks out the pixels in y,.

Noise2Void [Krull et al., 2019], Noise2Self [Batson, 2019]

* During training flip centre pixel
« Computes loss only on flipped pixels

Neighbor2Neighbor [Huang, 2023]

« Use different subsampling as input and target 5 i . .

« Assumes scale invariance T
—Jm Sub-Sampled ~ Sub-Sampled

Image g1(y)  Image g2(y)

Image y 2x2 cell




Traditional NOISE2NOISE NOISE2VOID
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Measurement Splitting

At test time, f(y) is evaluated as

1. Test f as trained (expensive)

Fe(y) =<3 M f(¥q,) With yg, ~ p(¥aly) and M = (ZV diag (my,))

2. Assume good generalization of f (cheap)

o YY) = f(¥e) With y, ~ p(¥aly)

« ') =f(y)



Blind Spot Networks

Blind spot networks [Laine et al., 2019], [Lee et al., 2022]

« Convolutional architecture that doesn’t ‘see’ centre pixel by construction

Les, fzs) = || ¥ — fasWI|*




Autoencoders

Autoencoders fap=d-e

Assume
* f has a strong bottleneck

Sf‘ (y) ~ 0(k) €K n is small

Lag, ) =11y — faeDII?

* Noise distribution is ‘high-dimensional’ whereas signal distribution is ‘low-dimensional’



Train Test Single MMSE Unknown Unknown
Eval Eval y optimal  separable coloured

noise noise
Noise2Noise | 1 1 o
R2R 1| > | @&
SURE 2 1 o o
UNSURE 2 |1 | @&
Noise2Void | 1 1 o Q
Blind Spot 1 >1 o o
Autoencoders | 1 1 o O

No free lunch: less assumptions about noise = less optimal estimator



Summary

SURE, R2R UNSURE i Noise2Self, Noise2Inverse, BlindSpot Net:
y) =20
E —(y) —0 E y) =20 Sfi L y) =0V €SS expressive
| ; Y oy I Y by, ®) | Eyyig, = 0Y; ) Y estimators
Y= + O€ Y=+ o€ Yy=ax+00E€ y=‘77’(%)+006 y|wNH13(yi|93i),Ey|w:w
known o unknown o unknown o unknown o,” unklrzul)wnp,



Sample Complexity

MSE - MMSE

—e— SUPo0=0.1
N2N oc=0.1
—e— SURE 0=0.1

- 0N

102 103 104
Dataset Size N



Self-supervised validation

» Follow the same validation practices in supervised learning

10°
101 overfitting - Self-sup. training loss
v . Self-sup. validation loss
3 10 Sup. test loss
10_3 = “ﬁ—&‘-ﬁﬂﬁ-—‘k‘
1074 \‘0\
0 50 100 150 200 250 300 350

Epoch




Incomplete Measurements?

For A # I, most estimators can be adapted to approximate

Eyy [1A(x = f()II?

In this case, the risk does not penalise f(y) in the nullspace of A!

e X

SCIESS
I RN~ RN




Learning from Measurements

How to learn from only y?

Access multiple operators y; = Ay x; with g € {1, ..., G}
Each A, with different nullspace

Offers the possibility for learning using multiple measurement operators

A1x1 Azxz A3x3 A1x1 Azxz

il

Asxs




Necessary Condition

Intuition: we need that the operators A4, 4,, ... A; cover the whole ambient space [T., 2022].

Proposition: Learning reconstruction mapping f from observed
measurements possible only if

rank(E; AjA4;) =n
and thus, if m = n/G.

+I I+E+




Learning Approach

We will consider networks X = f(y,A) , where f is also a function of
measurement operator e.g.,

- Filtered back projection f(y,A) = f(ATy) T
* Unrolled networks... “.. -y o
- Naive measurement consistency loss: e S —

ﬁMc(f)=IEy,g||y—Agf(y,Ag)||2 i —~ = upu

IpableLay

Without noise, a minimizer is the trivial solution f(y, 4;) = Agy, g



Measurement Splitting Revisited

Self-supervised learning via data undersampling (SSDU) [Yaman et al., 2019]

Assume clean measurements, sample additional mask S ~ p(S |4,) and mask inputs

LspLiry, f) = Egl| y — A f(Sy, SA)||?
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Measurement Splitting Revisited

Theorem [Daras et al. 2024]. If E{AT A|SA} has full rank, it has same minimizer as supervised loss,
f*(Sy,SA) = E{x|Sy, SA}

Inpainting example with G = 2 operators

Aq Ay
SA SA
fi (y) = E{A1x|Sy, SA} f2 (y) = E{A,x|Sy, SA}

ff ) =)+ ;) = E{x|Sy, SA}




Measurement Splitting Revisited

What happens if we have noisy data?

LspLir, f) = Egl|ly — A f(Sy, SA)||?

= Eg|| Sy — SA f(Sy, SA||* + || — Sy — (I — HA f(Sy, SA||?
\ v y. 1 v y,
Can be replaced by SURE,
R2R, etc.

Not affected by separable noise



Using All Measurements

Can we use all measurements?
Multi Operator Imaging (MOI) [Tachella et al., NeurlPS 2022]

Lyvot, f) = lly — Af(y, D% + Eu |l f (A%, A") — X||* with X = f(y, A)
|\ ) 1% )
Y a2

Replaced by SURE, R2R, etC.  Enforces f(4x, 4) ~ f(4'x, A")
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Magnetic Resonance Imaging

* Unrolled network
« FastMRI dataset (single coil)
« A, are subsets of Fourier measurements (x4 downsampling)

Measurements y Signal x Supervised Measurement Splitting MOI

|
|
|
|
|
|
|




Inpainting

« U-Net network
» CelebA dataset
* A, are inpainting masks

Measurements y Signal x Supervised MOl




Part 4: Learning with
equivariance




Symmetry Prior

ldea: Most natural signals sets X are invariant to groups of transformations.

Example: natural images are translation invariant

- Mathematically, a set X is invariant to {T, € R™*" }gEG if

VXEX, VgEG, Tyx€EX

Other symmetries: rotations, permutation, amplitude




Symmetry Prior

Equivariant Imaging [Chen, Davies and Tachella, ICCV 2021]

For all g € G we have /

4
—.

y =Ax = AT,;T; 'x = Agx'
2
s

«  We get multiple virtual operators {Ag}gEG ‘for free’!
« Each AT, might have a different nullspace



Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping f from observed
measurements possible only if

rank(IEg TgTATATg) =n,

and thus if m > maxs—’_ > %where s; and ¢; are dimension and multiplicity of irreps.
J

Ay Az Az Ay




(Non)-Equivariant Operators

Theorem [T. et al., 2023]: The full rank condition requires that A is not equivariant: AT, # T’gA

rank(E, T, ATAT,) = rank(A"(E,T, T,)A) = rank(ATA) =m <n




Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have f(AT,x) = T,f(Ax), i.e. f o A should be G-equivariant
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Equivariant Imaging

How can we enforce equivariance in practice?

Lei(y, f) = E, || T, — f(AT,%)||?

where X = f(y) is used as reference

Proposition [Tachella & Pereyra, 2024]: For linear and measurement
consistent Af (Ax) = Ax reconstruction, we have

Lg(y, ) = llx = fOI|* + bias

where the bias term is small if f o A is not equivariant.



Equivariant Imaging

Robust Equivariant Imaging [Chen, Tachella and Davies, CVPR 2022]

Lreiy, ) = |If (¥) — x||2 + L (y, f)
(N ,
Y

enforces equivariance of f o A
Replaced by SURE,
R2R, etc
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MRI

« Operator A is a subset of Fourier measurements (x2 downsampling)
« Dataset is approximately rotation invariant

Signal x Measurements y

Chen, T., Davies, CVPR 2022




Computed Tomography

« Operator A is (non-linear variant) sparse radon transform
« Mixed Poisson-Gaussian noise
« Dataset is approximately rotation invariant

Clean signal x Meas. consistency

Noisy
measurements y

Chen, T., Davies, CVPR 2022



Image Deblurring

« Operator A is isotropic blur with Gaussian noise
« Dataset is approximately scale invariant

ground truth
Y 1}‘(1 ‘?*’,
5§ 1

Scanvic, Davies, Abry, T., 2024




Bonus: Finetuning foundation
models




Reconstruct Anything Model

« We trained a model that can solve many inverse problems at once [Terris et al., 2025]

Motion blur %?nuosgsrfg‘hy Singlecoil MR foorﬁ’osg‘}r;phy Multicoil MR

measurement

In-distribution degradation and images Out-of-distribution degradation

Zero-shot performance



Finetuning

« The model can be finetuned with self-supervised losses on up to a single y (N = 1)
* Finetuning can be done in a few seconds

DRUNet RAM

ATy zero-shot Finetuned zero-shot Finetuned Reference

&
A
b
é Compressed Sensing  Demosaicing
q N=1 43 60
. N =10 80 107
N =100 228 267

Table 5. Self-superv1sed finetuning tlme in seconds.
4 N

Demosaicing




Conclusions

Self-supervised learning for imaging problems

 Theory: Necessary & sufficient conditions for learning
« Unbiased risk estimators
* Number of measurements
 Interplay between forward operator & data invariance

* Practice: self-supervised losses

» Can be applied to any model (including foundation ones!)
» Losses can be combined together



* Poor reconstructions
e Cannot handle noise/missing data
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