

Self Supervised Learning Methods for Imaging

Escuela de Primavera de Deep Learning, Buenos Aires, Argentina

Julián Tachella, CNRS, École Normale Supérieure de Lyon

The Inverse problem

Goal: estimate signal x from y

measurements
$$y = A(x) + \epsilon \leftarrow n \text{ rise/e nor}$$

Physics

We will focus on linear problems where the forward operator A is a matrix

Examples

Magnetic Resonance

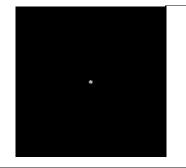
A: undersampled Fourier

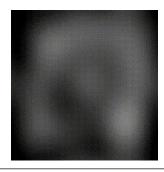
 $\boldsymbol{\chi}$

reconstruction

Imaging (MRI)

models

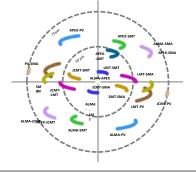




Source: **Brian Hargreaves**

Black Hole Imaging

A: spatial-frequency e.g. Event Horizon Telescope (EHT)



The Astrophysical Journal Letters, vol. 875, no. L1, 2019.

Cryogenic electron microscopy (Cryo-EM)

A: 2D projections of protein particles

recover

Covid-19 virus' structure

D. Wrapp et al. Science, vol. 367, no. 6483, 2020.

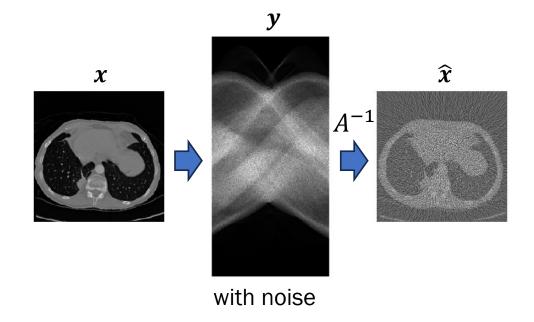
Why it is hard to invert?

Measurements are usually corrupted by noise, e.g.

$$y = Ax + \epsilon$$

Can be additive, as above, or more complex, e.g. Poisson.

- Often, we do not know the exact noise distribution
- The forward operator may be poorly conditioned



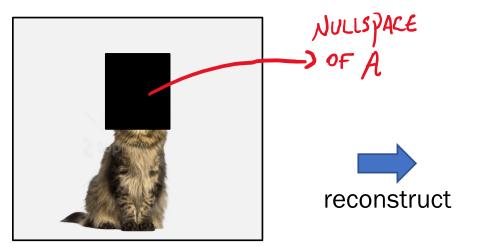
Why it is hard to invert?

Even in the absence of noise, A may not be invertible, giving infinitely many \hat{x} consistent with y:

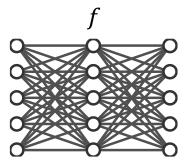
$$\widehat{\boldsymbol{x}} = A^{\dagger} \boldsymbol{y} + \boldsymbol{v}$$

where A^{\dagger} is the pseudo-inverse of A and v is any vector in nullspace of A

Unique solution only possible if set of signals x is low-dimensional

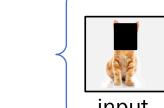


Idea: use training pairs of signals and measurements to directly learn the inversion function



$$\underset{f}{\operatorname{argmin}} \sum_{i=1}^{N} ||f(\mathbf{y}_i) - \mathbf{x}_i||^2$$

supervised dataset

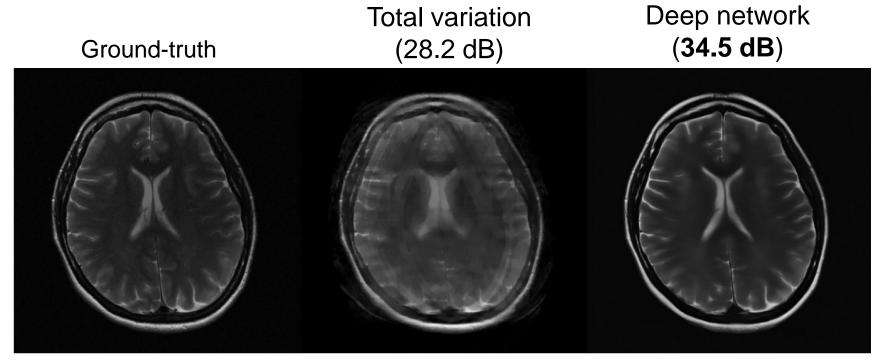


Advantages:

- State-of-the-art reconstructions
- Once trained, f_{θ} is easy to evaluate

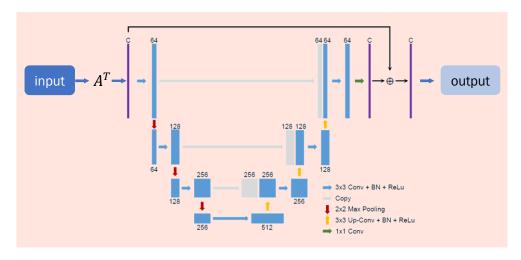
fastMRI

Accelerating MR Imaging with AI

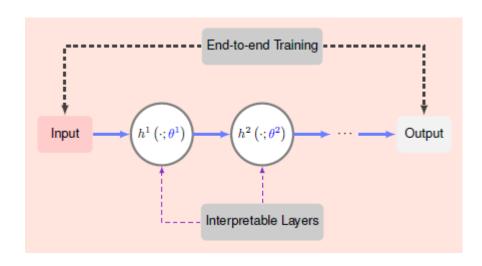


x8 accelerated MRI [Zbontar et al., 2019]

Many architecture choices, e.g.



Back projected U-Net: $\hat{x} = f(A^T y)$, e.g. [Jin, 2017]



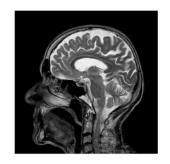
Unrolled networks: $\hat{x} = f(y, A)$, e.g. [Monga, 2020]

But also DnCNNs, DRUNet, SCUNet, DEQ, restormer, SwinIR, DiffPIR...

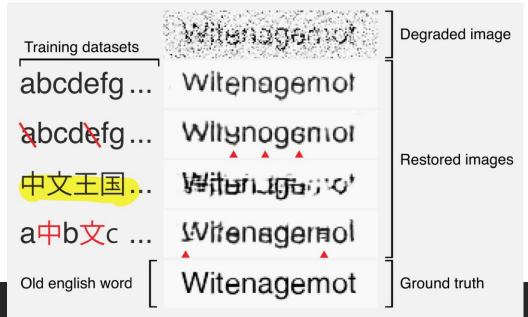
Here our focus will be on learning that is typically architecture agnostic

Main disadvantage: Obtaining training signals x_i can be expensive or impossible.

Medical and scientific imaging



Distribution shift [Belthangady & Royer, 2019]



AI for Knowledge Discovery?

Black hole picture captured for first time in space breakthrough

The Guardian

DeepMind uncovers structure of 200m proteins in scientific leap forward

What this talk is **not** about

Autoregressive models: LLM pretraining on an autoregressive task.

Self-supervised learning for feature learning: Sim2Sim, masked autoencoders, DINOv2,3, etc. Focus on learning features for downstream tasks.

Diffusion models and PnP: require pre-trained denoiser/scores with ground-truth data

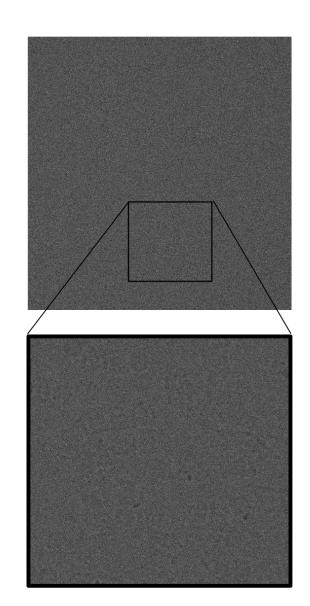
The methods presented can be used to train denoisers without ground-truth!

Purpose of this talk

How can we learn f from measurement $\{y_i\}_{i=1}^N$ data alone?

- 1. Noisy: $y = x + \epsilon$
- 2. Incomplete and noisy: $y = Ax + \epsilon$

$$\underset{f}{\operatorname{argmin}} \sum_{i=1}^{N} \mathcal{L}(y_i, f)$$



Best we can expect

We focus on ℓ_2 loss and minimum mean squared error estimators (MMSE)

$$f^* = \arg\min_{f} \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y}} ||\boldsymbol{x} - f(\boldsymbol{y})||^2$$

$$f^*(y) = \mathbb{E}\{x|y\}$$

 Other estimators might be preferred, eg. perceptual [Blau and Michaeli, 2018]

Self-supervised learning

Approximating the supervised loss:

1. Unbiased estimator

2. Same minimizer

$$\mathbb{E}_{\mathbf{y}} \mathcal{L}(\mathbf{y}, f) = \mathbb{E}_{\mathbf{x}, \mathbf{y}} || f(\mathbf{y}) - \mathbf{x} ||^2$$
 mizer
$$\operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{y}} \mathcal{L}(\mathbf{y}, f) = \operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{x}, \mathbf{y}} || f(\mathbf{y}) - \mathbf{x} ||^2$$

3. Unbiased estimator under constraints

$$\mathbb{E}_{\mathbf{y}} \mathcal{L}(\mathbf{y}, f) = \mathbb{E}_{\mathbf{x}, \mathbf{y}} || f(\mathbf{y}) - \mathbf{x} ||^2 \text{ for } certain f \neq \mathbb{E} \{ \mathbf{x} | \mathbf{y} \}$$

Part 2: Learning from noisy data

Denoising problems

In this part, we will focus on 'denoising' problems

$$y = Ax + \epsilon$$

where $A \in \mathbb{R}^{m \times n}$ is invertible (and thus $m \ge n$).

- We focus on A = I for simplicity.
- All methods in this part can be extended to any invertible A.

Self-supervised risk estimators

Supervised loss

$$\mathcal{L}_{\sup}(x,y,f) = ||x-f(y)||^2 = ||y-f(y)||^2 + 2f(y)^{\mathsf{T}}(y-x) + \text{const.}$$
Measurement key term to approximate! consistency
$$= f(y)^{\mathsf{T}} \epsilon$$

Naïve loss doesn't work!

$$\mathcal{L}_{MC}(\mathbf{y}, f) = ||\mathbf{y} - f(\mathbf{y})||^{2}$$

$$f^{*}(\mathbf{y}) = \mathbf{y}$$

Noise2Noise

Mallows C_p [Mallows, 1973], Noise2Noise [Lehtinen, 2018]

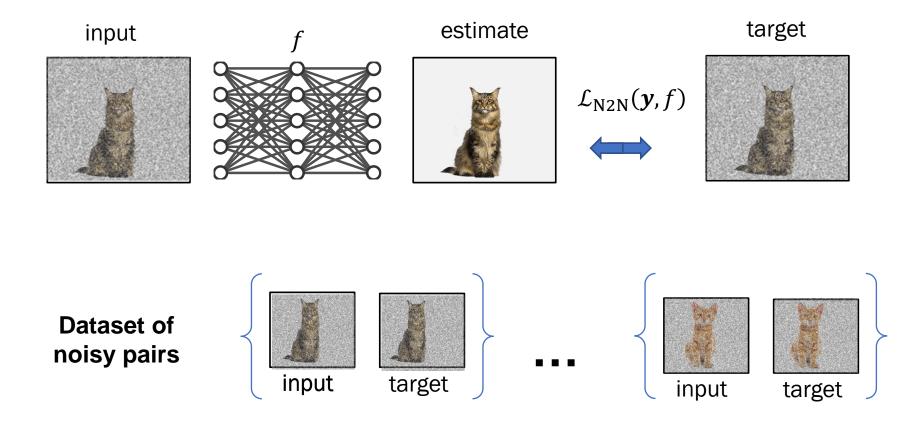
- Independent pairs $y_a = x + \epsilon_a$ and $y_b = x + \epsilon_b$ with ϵ_a , ϵ_b independent
- $\mathbb{E}_{\epsilon_b|x}\epsilon_b = \mathbf{0}$

$$\mathcal{L}_{\text{Noise2Noise}}(\boldsymbol{y}_a, \boldsymbol{y}_b, f) = ||\boldsymbol{y}_b - f(\boldsymbol{y}_a)||^2$$

$$\mathbb{E}_{\mathbf{y}_b|\mathbf{x}} f(\mathbf{y}_a)^{\mathsf{T}} (\mathbf{y}_b - \mathbf{x}) = f(\mathbf{x} + \boldsymbol{\epsilon}_a) \mathbb{E} \, \boldsymbol{\epsilon}_b = 0$$

• Also works for any noise distribution with $\mathbb{E}_{y_b|x} y_b = x$

Noise2Noise



Not useful for the microscopy example!

Recorrupted2Recorrupted

Recorrupted2Recorrupted [Pang et al., 2021], Coupled Bootstrap [Oliveira et al., 2022], Noisier2Noise [Moran et al., 2020].

Proposition: Let $y \sim N(x, I\sigma^2)$ and define

$$\mathbf{y}_a = \mathbf{y} + \sqrt{\frac{1-\alpha}{\alpha}} \boldsymbol{\omega}$$
 $\mathbf{y}_b = \frac{\mathbf{y}}{\alpha} - \frac{\mathbf{y}_a(1-\alpha)}{\alpha}$

where $\omega \sim N(\mathbf{0}, I\sigma^2)$ and $\alpha \in \mathbb{R}$, then y_a and y_b are **independent** random variables (fixed x).

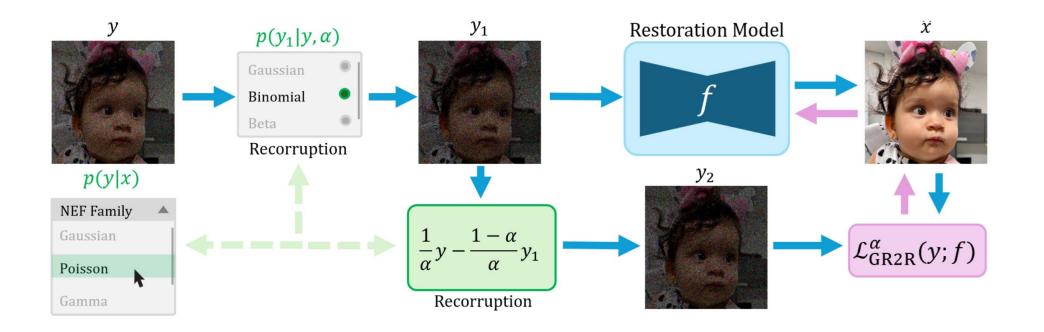
$$\mathcal{L}_{R2R}(\boldsymbol{y}, f) = \mathbb{E}_{\boldsymbol{\omega}} || \boldsymbol{y}_b - f(\boldsymbol{y}_a) ||^2$$

- Price to pay: $SNR(y_a) < SNR(y)$
- At test time, $f^{\text{test}}(y) = \frac{1}{N} \sum_{i} f\left(y + \sqrt{\frac{1-\alpha}{\alpha}} \omega_{i}\right)$ with $\omega_{i} \sim \mathcal{N}(\mathbf{0}, I\sigma^{2})$

Recorrupted2Recorrupted

Can be extended to other noise distributions [Monroy, Bacca and Tachella, CVPR 2025]

\mathbf{Model}	Gaussian	Poisson	Gamma	
	$oldsymbol{y} \sim \mathcal{N}(oldsymbol{x}, oldsymbol{\Sigma})$	$oldsymbol{z} \sim \mathcal{P}(oldsymbol{x}/\gamma), oldsymbol{y} = \gamma oldsymbol{z}$	$oldsymbol{y} \sim \mathcal{G}(\ell,\ell/oldsymbol{x})$	
\boldsymbol{y}_1	$igg egin{array}{c} oldsymbol{y}_1 = oldsymbol{y} + \sqrt{rac{lpha}{1-lpha}}oldsymbol{\omega}, \end{array} igg $	$oldsymbol{y}_1 = rac{oldsymbol{y} - \gamma oldsymbol{\omega}}{1 - lpha},$	$oxed{y}_1 = oldsymbol{y} \circ (oldsymbol{1} - oldsymbol{\omega})/(1 - lpha)$	
	$oldsymbol{\omega} \sim \mathcal{N}(0, oldsymbol{\Sigma})$	$oldsymbol{\omega} \sim \mathrm{Bin}(oldsymbol{z}, lpha)$	$\boldsymbol{\omega} \sim \mathrm{Beta}(\ell \alpha, \ell(1-\alpha))$	



Stein's Unbiased Risk Estimator

• Stein's lemma [Stein 1974]: Let $y|x \sim \mathcal{N}(x, I\sigma^2)$, f be weakly differentiable, then

$$\mathbb{E}_{\mathbf{y}|\mathbf{x}}(\mathbf{y} - \mathbf{x})^{\mathsf{T}} f(\mathbf{y}) = \mathbb{E}_{\mathbf{y}|\mathbf{x}} \sigma^2 \sum_{i} \frac{\delta f_i}{\delta y_i}(\mathbf{y})$$

$$\mathcal{L}_{SURE}(\mathbf{y}, f) = ||\mathbf{y} - f(\mathbf{y})||^2 + 2\sigma^2 \sum_{i} \frac{\delta f_i}{\delta y_i}(\mathbf{y})$$

Measurement Degrees of freedom [Efron, 2004] consistency

- Hudson's lemma [Hudson 1978] extends this result for the exponential family (eg. Poisson Noise)
- Beyond exponential family: **Poisson-Gaussian noise** [Le Montagner et al., 2014] [Raphan and Simoncelli, 2011]

Stein's Unbiased Risk Estimator

Monte Carlo SURE [Efron 1975, Breiman 1992, Ramani et al., 2007]

SURE's divergence is generally approximated as

$$\sum_{i} \frac{\delta f_{i}}{\delta y_{i}}(\mathbf{y}) \approx \frac{\boldsymbol{\omega}^{\mathsf{T}}}{\alpha} \left(f(\mathbf{y}) - f(\mathbf{y} + \boldsymbol{\omega}\alpha) \right)$$

where $\alpha > 0$ small, $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}, I)$

• Noisier2Noise is equivalent to SURE when $\alpha \to 0$ [Monroy Bacca and Tachella, CVPR 2025].

Stein's Unbiased Risk Estimator

The solution to SURE is Tweedie's Formula

$$\arg\min_{f} \ \mathbb{E}_{y}||\ \mathbf{y} - f(\mathbf{y})||^{2} + 2\sigma^{2} \sum_{i} \frac{\delta f_{i}}{\delta y_{i}}(\mathbf{y})$$

$$\arg\min_{f} \ \mathbb{E}_{y} ||\ \mathbf{y} - f(\mathbf{y})||^{2} - 2\sigma^{2} \sum_{i} f(\mathbf{y}) \frac{\delta \log p_{y}(\mathbf{y})}{\delta y_{i}}$$

$$\arg\min_{f} \ \mathbb{E}_{y} ||\ f(\mathbf{y}) - \mathbf{y} - \sigma^{2} \nabla \log p_{y}(\mathbf{y})||^{2}$$

$$f$$

$$\Rightarrow f(\mathbf{y}) = \mathbf{y} + \sigma^{2} \nabla \log p_{y}(\mathbf{y})$$
Integration by parts
$$\operatorname{Complete squares}$$

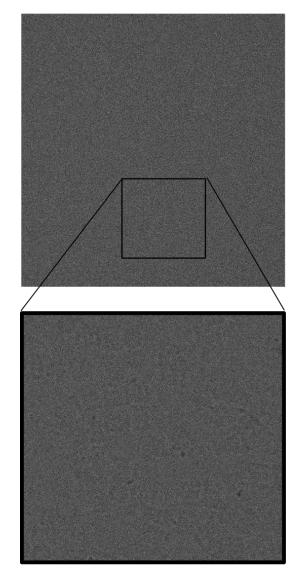
$$f(\mathbf{y}) = \mathbf{y} + \sigma^{2} \nabla \log p_{y}(\mathbf{y})$$

- Noise2Score [Kim and Ye, 2021] learns $\nabla \log p_{\nu}(y)$ from noisy data + denoises with Tweedie.
- Key formula behind diffusion models, which can be trained self-supervised [Daras et al., 2024]

Summary So Far

	Train Eval	Test Eval	Single y	MMSE optimal	Unknown noise
Noise2Noise	1	1			②
R2R	1	>1	Ø		
SURE	2	1	Ø	Ø	

If we have a single y and don't know the noise distribution?



UNSURE

Assumption: Let $y|x \sim \mathcal{N}(x, I\sigma^2)$, σ^2 unknown

UNSURE [Tachella et al., ICLR 2025]

$$\mathcal{L}_{\text{UNSURE}}(\mathbf{y}, f) = ||\mathbf{y} - f(\mathbf{y})||^2 \text{ subject to } \mathbb{E}_{\mathbf{y}} \sum_{i} \frac{\delta f_i}{\delta y_i}(\mathbf{y}) = 0$$

- SURE's perspective: $\mathcal{L}_{\text{SURE}}(\boldsymbol{y},f) = ||\boldsymbol{y} f(\boldsymbol{y})||^2 + 2\sigma^2 \sum_{i} \frac{\delta f_i}{\delta f_i}(\boldsymbol{y})$
- Not MMSE optimal (but almost)

UNSURE

In practice, we use Lagrange multipliers

$$\min_{f} \max_{\eta} \mathbb{E}_{\mathbf{y}} ||\mathbf{y} - f(\mathbf{y})||^{2} + 2\eta \sum_{i} \frac{\delta f_{i}}{\delta y_{i}}(\mathbf{y})$$

Expected error

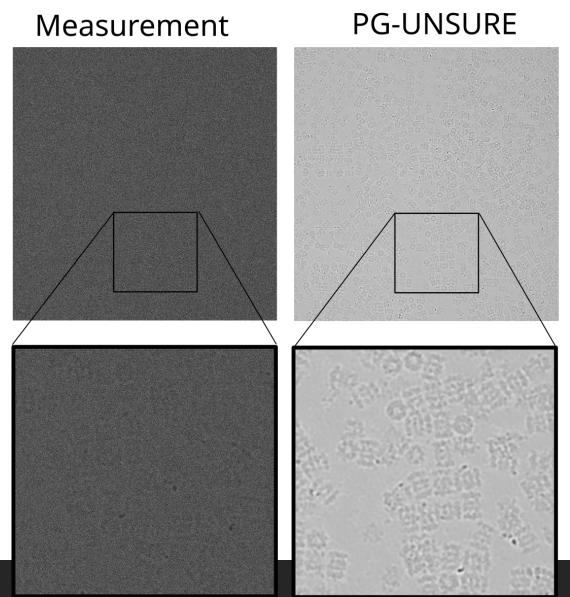
$$\frac{1}{n}\mathbb{E}_{x,y}||f^*(y) - x|| = \sigma^2 \left(\frac{1}{1 - \frac{\text{MMSE}}{\sigma^2}} - 1\right) \approx \text{MMSE} + \frac{\text{MMSE}^2}{\sigma^2}$$

UNSURE can be extended to unknown noise covariance and Poisson Gaussian noise

Experiments

Real data experiments

- Cryo electron microscopy images
- Extremely low SNR
- Approx. Poisson-Gaussian noise



Cross-Validation Methods

Assumption: f_i does not depend on y_i , that is $\frac{\delta f_i}{\delta y_i} = 0$. Decomposable noise $p(y|x) = \prod p(y_i|x_i)$

$$\mathbb{E}_{\mathbf{y}|\mathbf{x}} \sum_{i=1}^{n} f_i(\mathbf{y})(y_i - x_i) = \sum_{i=1}^{n} \mathbb{E}_{\mathbf{y}_{-i}|\mathbf{x}} f_i(\mathbf{y}_{-i}) \mathbb{E}_{\mathbf{y}_{i}|x_i} (y_i - x_i) = 0$$

$$\mathcal{L}_{CV}(\mathbf{y}, f) = ||\mathbf{y} - f(\mathbf{y})||^2$$
 subject to $\frac{\delta f_i}{\delta y_i}(\mathbf{y}) = 0 \ \forall i, \mathbf{y}$

SURE's perspective:

$$\mathcal{L}_{SURE}(\mathbf{y}, f) = ||\mathbf{y} - f(\mathbf{y})||^2 + 2\sigma^2 \sum_{i} \frac{\delta f_i}{\delta y_i}(\mathbf{y})$$

- These methods are not MMSE optimal
- How to remove dependence on y_i : training or architecture

Measurement Splitting

Cross-validation [Efron, 2004]: random split $y = \begin{bmatrix} y_a \\ y_b \end{bmatrix}$ at each iteration

$$\mathcal{L}_{N2V}(\mathbf{y}, f) = \mathbb{E}_{a,b}||\mathbf{y}_b - \operatorname{diag} \mathbf{m}_b f(\mathbf{y}_a)||^2$$

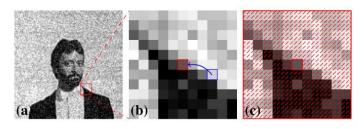
where $m_b \in \{0,1\}^n$ masks out the pixels in y_a .

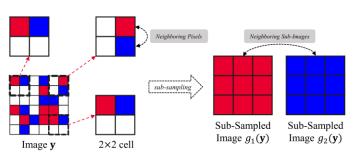
Noise2Void [Krull et al., 2019], Noise2Self [Batson, 2019]

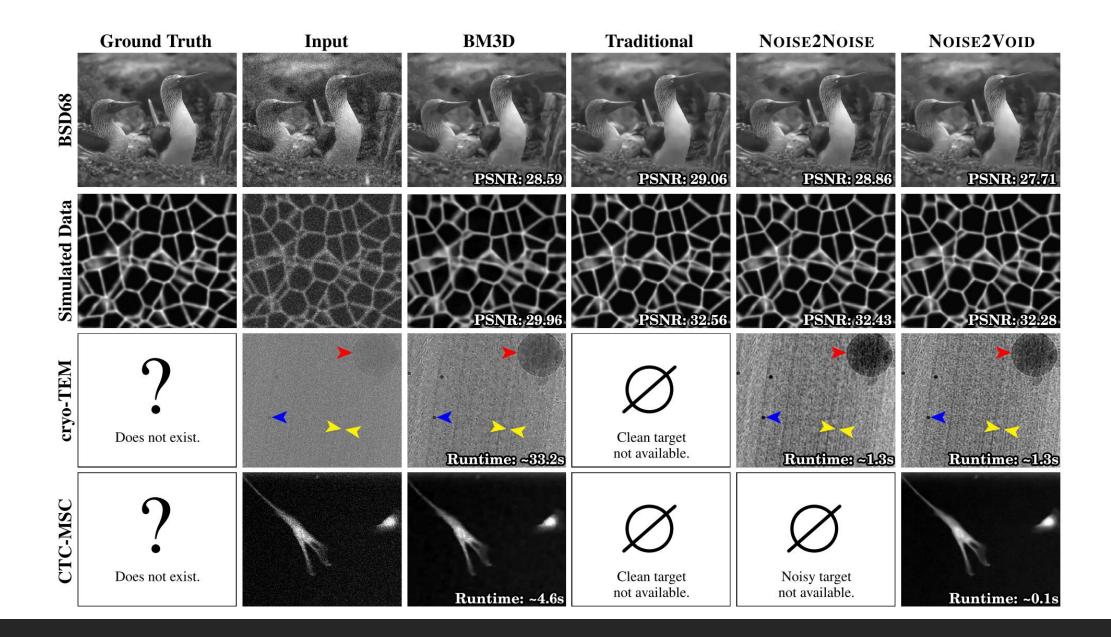
- During training flip centre pixel
- Computes loss only on flipped pixels

Neighbor 2Neighbor [Huang, 2023]

- Use different subsampling as input and target
- Assumes scale invariance







Measurement Splitting

At **test time**, f(y) is evaluated as

1. Test *f* as trained (expensive)

$$f^{\text{test}}(\mathbf{y}) = \frac{1}{N} \sum_{i} M f(\mathbf{y}_{a_i}) \text{ with } \mathbf{y}_{a_i} \sim p(\mathbf{y}_a | \mathbf{y}) \text{ and } M = \left(\sum_{i}^{N} \text{diag}(\mathbf{m}_{b,i})\right)^{-1}$$

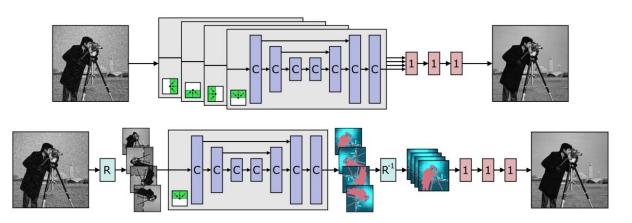
- 2. Assume good generalization of f (cheap)
- $f^{\text{test}}(y) = f(y_a)$ with $y_a \sim p(y_a|y)$
- $f^{\text{test}}(\mathbf{y}) = f(\mathbf{y})$

Blind Spot Networks

Blind spot networks [Laine et al., 2019], [Lee et al., 2022]

Convolutional architecture that doesn't 'see' centre pixel by construction

$$\mathcal{L}_{\mathrm{BS}}(\boldsymbol{y}, f_{\mathrm{BS}}) = ||\boldsymbol{y} - f_{\mathrm{BS}}(\boldsymbol{y})||^2$$

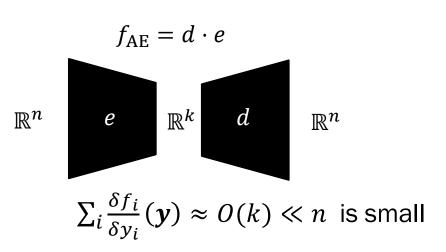


Autoencoders

Autoencoders

Assume

f has a strong bottleneck



$$\mathcal{L}_{AE}(\mathbf{y}, f) = ||\mathbf{y} - f_{AE}(\mathbf{y})||^2$$

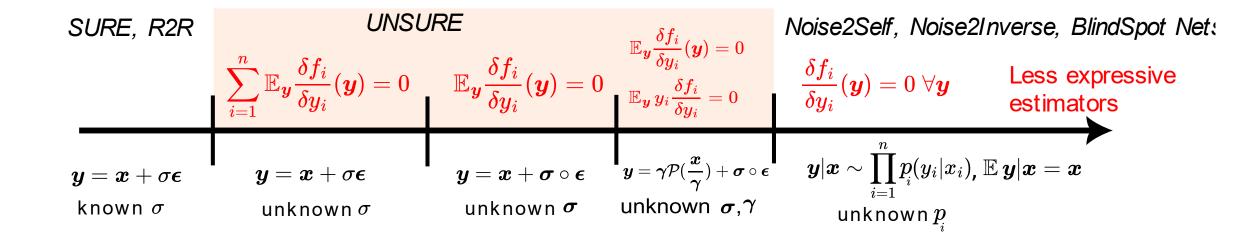
Noise distribution is 'high-dimensional' whereas signal distribution is 'low-dimensional'

Summary

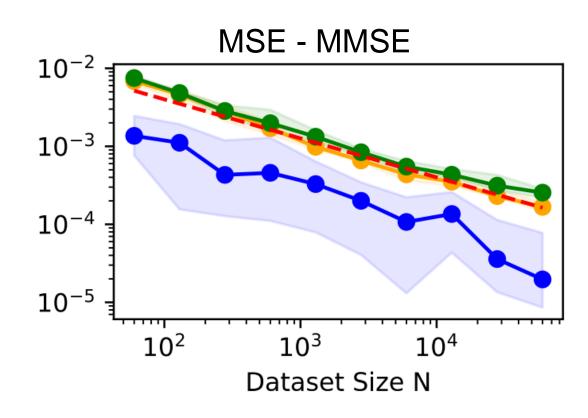
	Train Eval	Test Eval	Single y	MMSE optimal	Unknown separable noise	Unknown coloured noise
Noise2Noise	1	1			Ø	
R2R	1	>1				
SURE	2	1	(Ø		
UNSURE	2	1		Ø		
Noise2Void	1	1	(Ø	
Blind Spot	1	>1			Ø	
Autoencoders	1	1			Ø	Ø

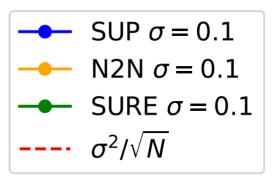
No free lunch: less assumptions about noise = less optimal estimator

Summary



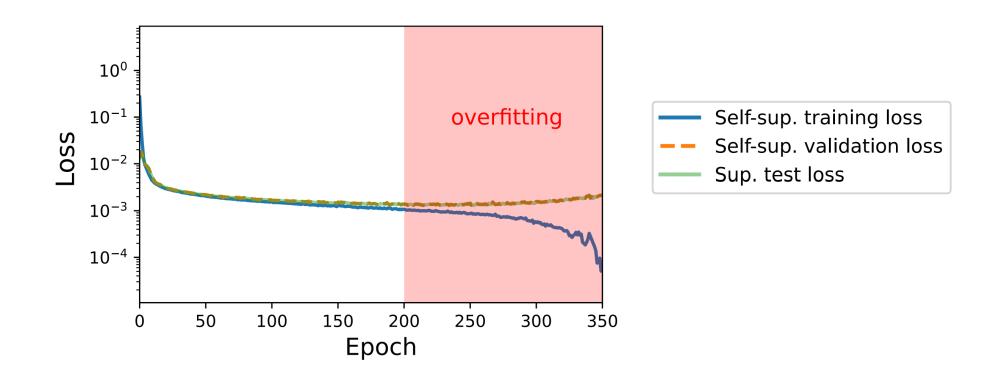
Sample Complexity





Self-supervised validation

Follow the same validation practices in supervised learning

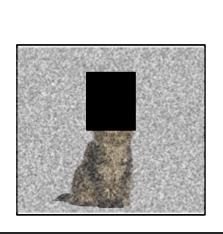


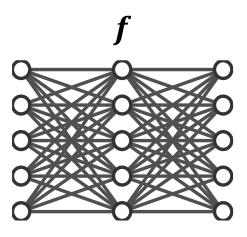
Incomplete Measurements?

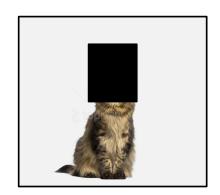
For $A \neq I$, most estimators can be adapted to approximate

$$\mathbb{E}_{x,y} ||A(x - f(y))||^2$$

In this case, the risk does not penalise f(y) in the **nullspace** of A!



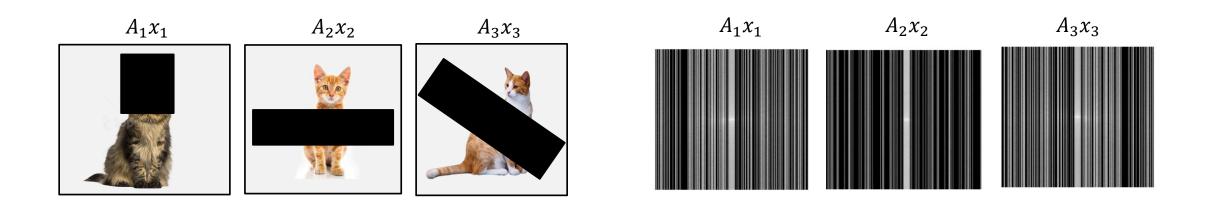




Learning from Measurements

How to learn from only y?

- Access multiple operators $y_i = A_{g_i}x_i$ with $g \in \{1, ..., G\}$
- Each A_g with different nullspace
- Offers the possibility for learning using multiple measurement operators



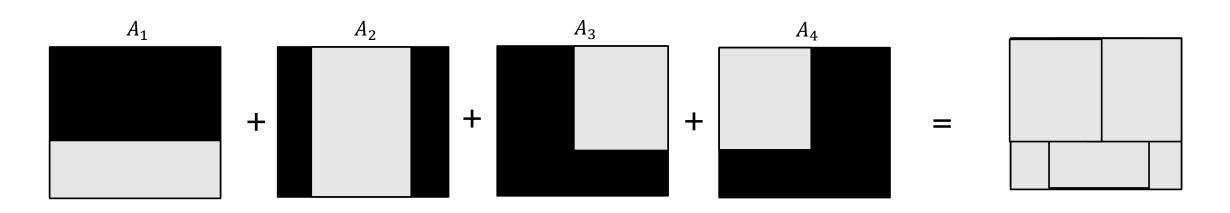
Necessary Condition

Intuition: we need that the operators A_1 , A_2 , ... A_G cover the whole ambient space [T., 2022].

Proposition: Learning reconstruction mapping f from observed measurements possible only if

$$\operatorname{rank}(\mathbb{E}_g A_g^{\mathsf{T}} A_g) = n$$

and thus, if $m \ge n/G$.



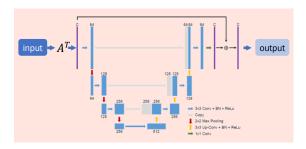
Learning Approach

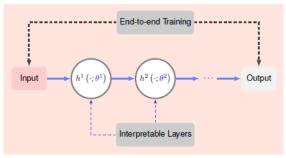
We will consider networks $\hat{x} = f(y, A)$, where f is also a function of measurement operator e.g.,

- Filtered back projection $f(y, A) = f(A^{\dagger}y)$
- Unrolled networks...
- Naïve measurement consistency loss:

$$\mathcal{L}_{MC}(f) = \mathbb{E}_{\mathbf{y},g} ||\mathbf{y} - A_g f(\mathbf{y}, A_g)||^2$$

Without noise, a minimizer is the trivial solution $f(\mathbf{y}, A_g) = A_g^{\dagger} \mathbf{y}, \forall g$



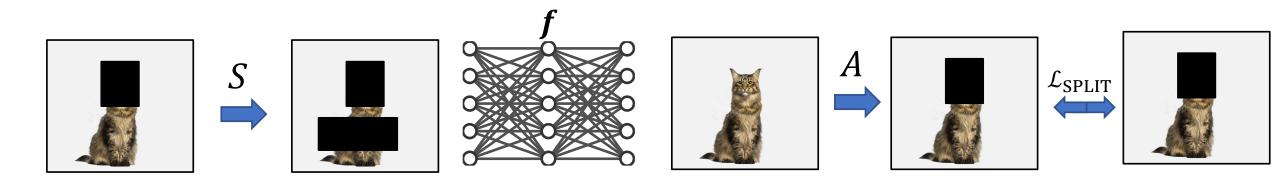


Measurement Splitting Revisited

Self-supervised learning via data undersampling (SSDU) [Yaman et al., 2019]

Assume clean measurements, sample additional mask $S \sim p(S | A_q)$ and mask inputs

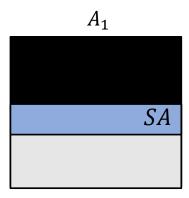
$$\mathcal{L}_{SPLIT}(\mathbf{y}, f) = \mathbb{E}_{S}||\mathbf{y} - A f(S\mathbf{y}, SA)||^{2}$$



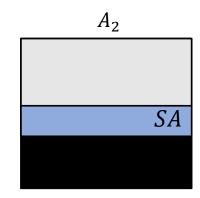
Measurement Splitting Revisited

Theorem [Daras et al. 2024]. If $\mathbb{E}\{A^{\mathsf{T}}A|SA\}$ has full rank, it has same minimizer as supervised loss, $f^*(Sy,SA) = \mathbb{E}\{x|Sy,SA\}$

Inpainting example with G = 2 operators



$$f_1^*(\mathbf{y}) = \mathbb{E}\{A_1\mathbf{x}|S\mathbf{y},SA\}$$



$$f_2^*(\mathbf{y}) = \mathbb{E}\{A_2\mathbf{x}|S\mathbf{y},SA\}$$

$$f^*(y) = f_1^*(y) + f_2^*(y) = \mathbb{E}\{x | Sy, SA\}$$

Measurement Splitting Revisited

What happens if we have noisy data?

$$\mathcal{L}_{SPLIT}(\boldsymbol{y}, f) = \mathbb{E}_{S} || \boldsymbol{y} - A f(S\boldsymbol{y}, SA)||^{2}$$

$$= \mathbb{E}_{S} || S\boldsymbol{y} - SA f(S\boldsymbol{y}, SA)||^{2} + ||(I - S)\boldsymbol{y} - (I - S)A f(S\boldsymbol{y}, SA)||^{2}$$

Can be replaced by SURE, R2R, etc.

Not affected by separable noise

Using All Measurements

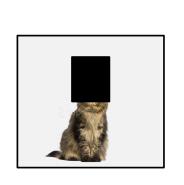
Can we use all measurements?

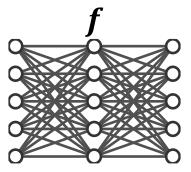
Multi Operator Imaging (MOI) [Tachella et al., NeurIPS 2022]

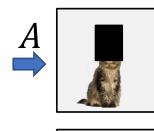
$$\mathcal{L}_{\text{MOI}}(\mathbf{y}, f) = \|\mathbf{y} - Af(\mathbf{y}, A)\|^2 + \mathbb{E}_{A'} \|f(A'\widehat{\mathbf{x}}, A') - \widehat{\mathbf{x}}\|^2 \text{ with } \widehat{\mathbf{x}} = f(\mathbf{y}, A)$$

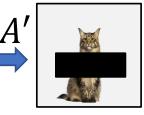
Replaced by SURE, R2R, etc.

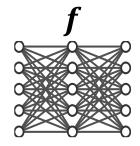
Enforces
$$f(Ax, A) \approx f(A'x, A')$$





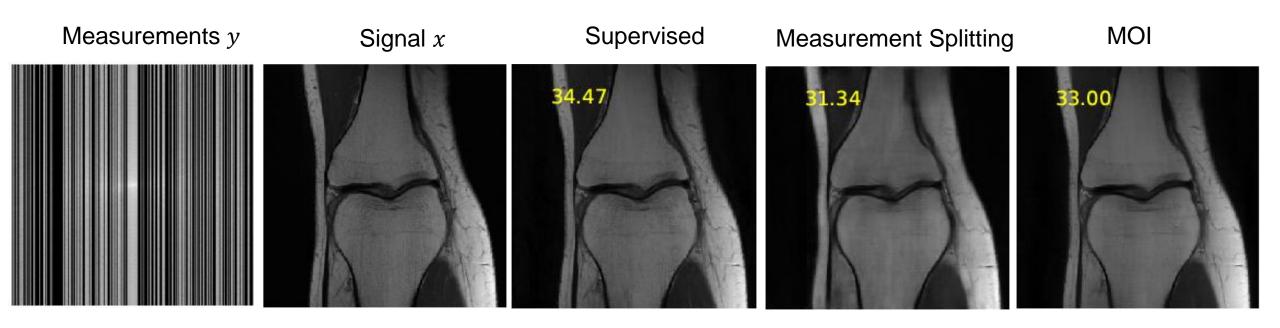






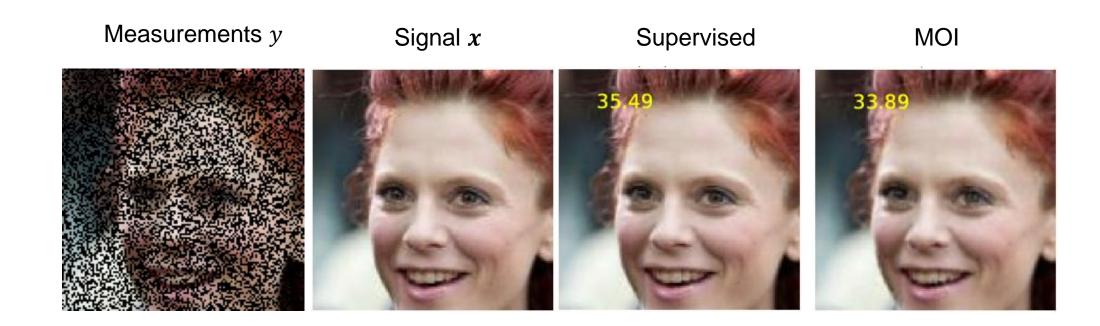
Magnetic Resonance Imaging

- Unrolled network
- FastMRI dataset (single coil)
- A_g are subsets of Fourier measurements (x4 downsampling)



Inpainting

- U-Net network
- CelebA dataset
- A_g are inpainting masks



Part 4: Learning with equivariance

Symmetry Prior

Idea: Most natural signals sets \mathcal{X} are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set \mathcal{X} is invariant to $\left\{T_g \in \mathbb{R}^{n \times n}\right\}_{g \in G}$ if

$$\forall x \in \mathcal{X}, \ \forall g \in G, \ T_g x \in \mathcal{X}$$

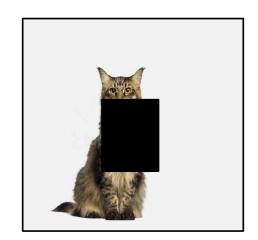
Other symmetries: rotations, permutation, amplitude

Symmetry Prior

Equivariant Imaging [Chen, Davies and Tachella, ICCV 2021]

For all $g \in G$ we have

$$y = Ax = AT_g T_g^{-1} x = A_g x'$$



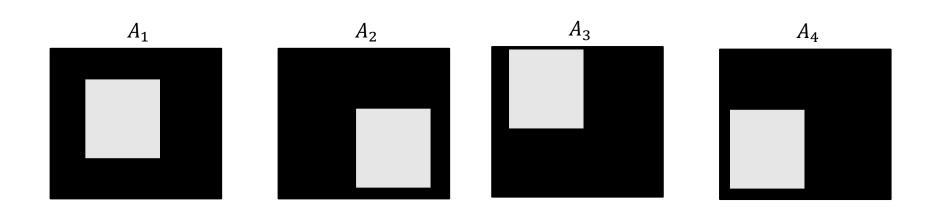
- We get multiple virtual operators $\{A_g\}_{g \in G}$ 'for free'!
- Each AT_g might have a different nullspace

Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping f from observed measurements possible only if

$$\operatorname{rank}(\mathbb{E}_g T_g^{\mathsf{T}} A^{\mathsf{T}} A T_g) = n,$$

and thus if $m \ge \max \frac{c_j}{s_i} \ge \frac{n}{|G|}$ where s_j and c_j are dimension and multiplicity of irreps.



(Non)-Equivariant Operators

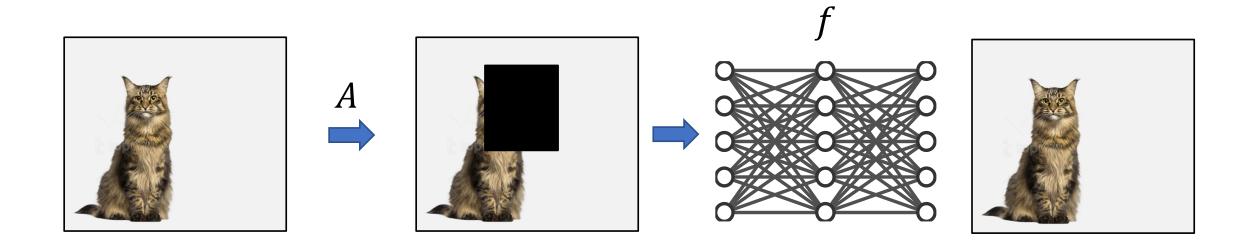
Theorem [T. et al., 2023]: The full rank condition requires that A is not equivariant: $AT_g \neq \tilde{T}_g A$

$$\operatorname{rank}(\mathbb{E}_g \ T_g^{\mathsf{T}} A^{\mathsf{T}} A T_g) = \operatorname{rank}(A^{\mathsf{T}}(\mathbb{E}_g \tilde{T}_g^{\mathsf{T}} \tilde{T}_g) A) = \operatorname{rank}(A^{\mathsf{T}} A) = m < n$$

Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have $f(AT_gx) = T_gf(Ax)$, i.e. $f \circ A$ should be G-equivariant



Equivariant Imaging

How can we enforce equivariance in practice?

$$\mathcal{L}_{EI}(\mathbf{y}, f) = \mathbb{E}_g || T_g \widehat{\mathbf{x}} - f (A T_g \widehat{\mathbf{x}}) ||^2$$

where $\hat{x} = f(y)$ is used as reference

Proposition [Tachella & Pereyra, 2024]: For linear and measurement consistent Af(Ax) = Ax reconstruction, we have

$$\mathcal{L}_{EI}(\mathbf{y}, f) = ||\mathbf{x} - f(\mathbf{y})||^2 + bias$$

where the *bias* term is small if $f \circ A$ is **not** equivariant.

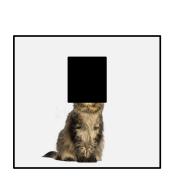
Equivariant Imaging

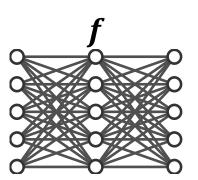
Robust Equivariant Imaging [Chen, Tachella and Davies, CVPR 2022]

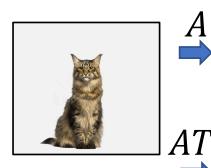
$$\mathcal{L}_{REI}(\mathbf{y}, f) = \left| |f(\mathbf{y}) - \mathbf{x}| \right|^2 + \mathcal{L}_{EI}(\mathbf{y}, f)$$

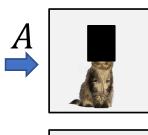
Replaced by SURE, R2R, etc

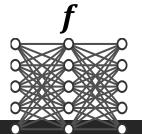
enforces equivariance of $f \circ A$











MRI

- Operator *A* is a subset of Fourier measurements (x2 downsampling)
- Dataset is approximately rotation invariant

Signal x Measurements y

Computed Tomography

14.12

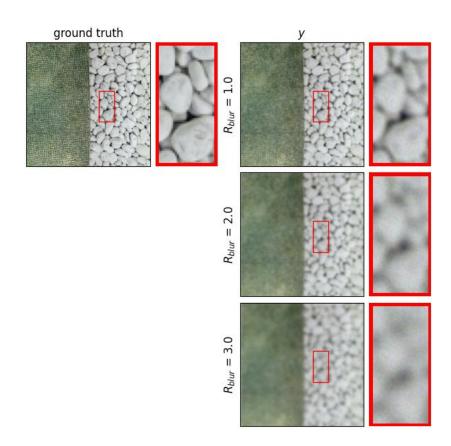
- Operator A is (non-linear variant) sparse radon transform
- Mixed Poisson-Gaussian noise
- Dataset is approximately rotation invariant

Noisy measurements y

Meas. consistency Clean signal x

Image Deblurring

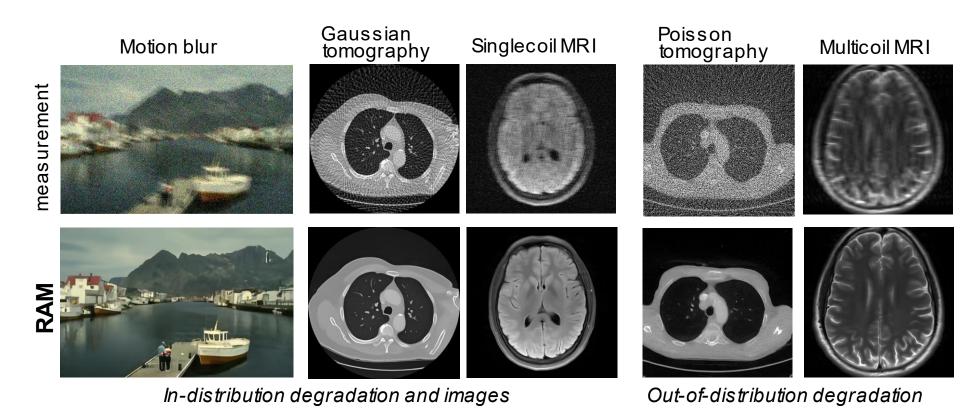
- Operator A is isotropic blur with Gaussian noise
- Dataset is approximately scale invariant



Bonus: Finetuning foundation models

Reconstruct Anything Model

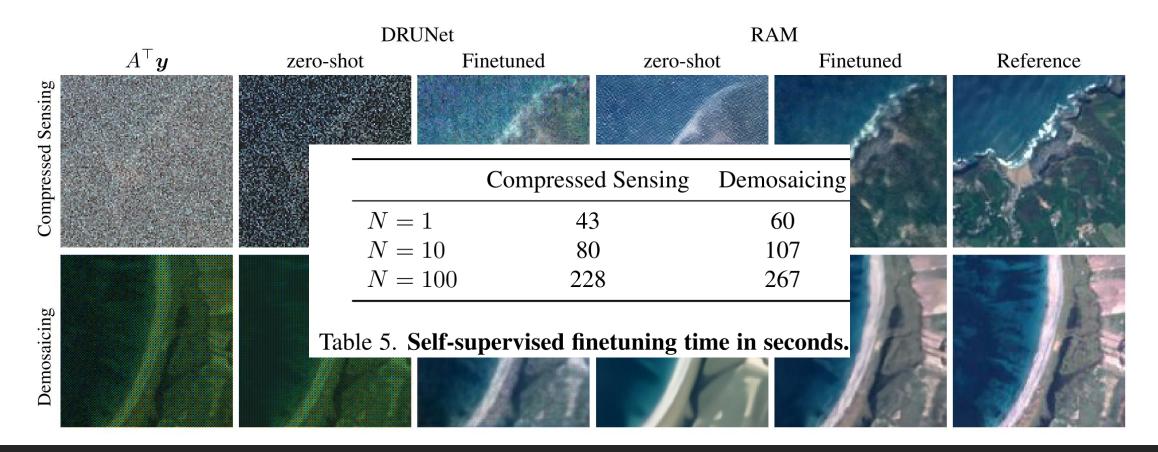
We trained a model that can solve many inverse problems at once [Terris et al., 2025]



Zero-shot performance

Finetuning

- The model can be finetuned with self-supervised losses on up to a single y (N = 1)
- Finetuning can be done in a few seconds



Conclusions

Self-supervised learning for imaging problems

- Theory: Necessary & sufficient conditions for learning
 - Unbiased risk estimators
 - Number of measurements
 - Interplay between forward operator & data invariance
- **Practice**: self-supervised losses
 - Can be applied to any model (including foundation ones!)
 - Losses can be combined together

- Poor reconstructions
- Cannot handle noise/missing data

Quickstart Examples User Guide API Finding Help More

Section Navigation

Basics ~ Optimization \checkmark Plug-and-Play ~ Sampling ~ Unfolded ~ **Patch Priors** ~ Self-Supervised Learning \checkmark Adversarial Learning ~ Advanced ~

♠ > Examples

Examples

All the examples have a download link at the end. You can load the example's notebook on <u>Google</u> Colab and run them by adding the line

pip install git+https://github.com/deepinv/deepinv.git#egg=deepinv

to the top of the notebook (e.g., as in here).

Basics

Deep Inverse

References

Paper references:

https://tachella.github.io/projects/selfsuptutorial/

Code examples:

https://andrewwango.github.io/deepinv-selfsup-fastmri/demo https://deepinv.github.io/deepinv/auto_examples/self-supervised-learning/index.html

YouTube version (3 hours):

https://youtu.be/gf-WCHXAdfk?si=bRC6Pq0WpZHNrRLU