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The Inverse problem

Goal: estimate signal 𝒙 from 𝒚

𝒚 = 𝐴(𝒙) + 𝝐

We will focus on linear problems where the forward operator 𝐴 is a matrix 
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Why it is hard to invert?

Measurements are usually corrupted by noise, e.g.

𝒚 = 𝐴𝒙 + 𝝐

Can be additive, as above, or more complex, e.g. Poisson. 

• Often, we do not know the exact noise  

distribution

• The forward operator may be poorly 

conditioned
𝐴−1

𝒚

𝒙 ෝ𝒙
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Why it is hard to invert?

Even in the absence of noise, 𝐴 may not be invertible, giving infinitely 

many ෝ𝒙 consistent with 𝒚:

ෝ𝒙 = 𝐴†𝒚 + 𝒗

where 𝐴† is the pseudo-inverse of 𝐴 and 𝒗 is any vector in nullspace of 𝐴

Unique solution only possible if set of signals 𝒳 is low-dimensional 

reconstruct

Why it is hard to invert?
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Learning approach

Idea: use training pairs of signals and measurements to directly learn 

the inversion function

𝑓

input target input target

…
supervised

dataset

argmin
𝑓

෍

𝑖=1

𝑁

|| 𝑓 𝒚𝑖 − 𝒙𝑖||
2
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Advantages: 

• State-of-the-art reconstructions

• Once trained, 𝑓𝜃 is easy to evaluate

x8 accelerated MRI [Zbontar et al., 2019]

Deep network 

(34.5 dB)Ground-truth

Total variation

(28.2 dB)

Learning approach
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Learning approach

Many architecture choices, e.g.

But also DnCNNs, DRUNet, SCUNet, DEQ, restormer, SwinIR, DiffPIR…

Here our focus will be on learning that is typically architecture agnostic

Unrolled networks: ෝ𝒙 = 𝑓(𝒚, 𝐴), e.g. [Monga, 2020] Back projected U-Net: ෝ𝒙 = 𝑓(𝐴⊤𝒚), e.g. [Jin, 2017] 

𝐴𝑇 outputinput
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Learning approach

Main disadvantage: Obtaining training signals 𝒙𝑖 can be expensive or impossible. 

• Medical and scientific imaging

• Distribution shift [Belthangady & Royer, 2019]
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AI for Knowledge Discovery?
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What this talk is not about

Autoregressive models: LLM pretraining on an autoregressive task.

Self-supervised learning for feature learning: Sim2Sim, masked 

autoencoders, DINOv2,3, etc. Focus on learning features for 

downstream tasks.

Diffusion models and PnP: require pre-trained denoiser/scores with 

ground-truth data
• The methods presented can be used to train denoisers without ground-truth!
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Purpose of this talk

How can we learn 𝑓 from measurement 𝒚𝑖 𝑖=1
𝑁

data alone?

1. Noisy:  𝒚 = 𝒙 + 𝝐

2. Incomplete and noisy:  𝒚 = 𝐴𝒙 + 𝝐

argmin ෍

𝑖=1

𝑁

ℒ(𝑦𝑖 , 𝑓)
𝑓
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𝑓∗ = argmin
𝑓

𝔼𝒙,𝒚 ||𝒙 − 𝑓 𝒚 ||2

Best we can expect

We focus on ℓ2 loss and minimum mean squared error estimators 

(MMSE)

• Other estimators might be preferred, eg. perceptual 

[Blau and Michaeli, 2018]

𝑓∗ 𝒚 = 𝔼{𝒙|𝒚}
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Self-supervised learning

Approximating the supervised loss:

1. Unbiased estimator 

𝔼𝒚 ℒ 𝒚, 𝑓 = 𝔼𝒙,𝒚|| 𝑓 𝒚 − 𝒙||2

2. Same minimizer 

argmin 𝔼𝒚 ℒ 𝒚, 𝑓 = argmin 𝔼𝒙,𝒚|| 𝑓 𝒚 − 𝒙||2

3. Unbiased estimator under constraints 

𝔼𝒚 ℒ 𝒚, 𝑓 = 𝔼𝒙,𝒚|| 𝑓 𝒚 − 𝒙||2 for certain 𝑓 ≠ 𝔼{𝒙|𝒚}

𝑓 𝑓

𝑓∗ 𝒚 = 𝔼{𝒙|𝒚}



Part 2: Learning from noisy data



17

In this part, we will focus on ‘denoising’ problems

𝒚 = 𝐴𝒙 + 𝝐

where 𝐴 ∈ ℝ𝑚×𝑛 is invertible (and thus 𝑚 ≥ 𝑛).

• We focus on 𝑨 = 𝑰 for simplicity.

• All methods in this part can be extended to any invertible 𝑨.

Denoising problems
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ℒsup 𝒙, 𝒚, 𝑓 = ||𝒙 − 𝑓 𝒚 ||2

Self-supervised risk estimators

key term to approximate!

= 𝒇 𝒚 ⊤𝝐

= ||𝒚 − 𝑓 𝒚 ||2 + 2𝑓(𝒚)⊤ 𝒚 − 𝒙 + const.

Supervised loss

Measurement

consistency

Naïve loss doesn’t work!

ℒMC 𝒚, 𝑓 = ||𝒚 − 𝑓 𝒚 ||2

𝑓∗ 𝒚 = 𝒚



19

Mallows 𝑪𝒑 [Mallows, 1973], Noise2Noise [Lehtinen, 2018]

• Independent pairs 𝒚𝑎 = 𝒙 + 𝝐𝑎 and 𝒚𝑏 = 𝒙 + 𝝐𝑏 with 𝝐𝑎 , 𝝐𝑏 independent 

• 𝔼𝝐𝒃|𝒙𝝐𝒃 = 𝟎

ℒNoise2Noise 𝒚𝑎, 𝒚𝑏, 𝑓 = || 𝒚𝑏 − 𝑓 𝒚𝑎 ||2

Noise2Noise

• Also works for any noise distribution with 𝔼𝒚𝒃|𝒙 𝒚𝒃 = 𝒙

𝔼𝒚𝑏|𝒙 𝑓 𝒚𝑎
⊤ 𝒚𝒃 − 𝒙 = 𝑓 𝒙 + 𝝐𝑎 𝔼 𝝐𝑏 = 0

=0
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𝑓

input targetinput input target

…
Dataset of 

noisy pairs

Noise2Noise

estimateinput

ℒN2N 𝒚, 𝑓

target

Not useful for the microscopy example!
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Recorrupted2Recorrupted

Recorrupted2Recorrupted [Pang et al., 2021], Coupled Bootstrap [Oliveira et al., 2022], 

Noisier2Noise [Moran et al., 2020].

ℒ𝑅2𝑅 𝒚, 𝑓 = 𝔼𝝎|| 𝒚𝑏− 𝑓 𝒚𝑎 ||2

Proposition: Let 𝒚 ∼ 𝑁 𝒙, 𝐼𝜎2 and define 

𝒚𝑎 = 𝒚 +
1−𝛼

𝛼
𝝎

𝒚𝑏 =
𝒚

𝛼
−
𝒚𝑎 1 − 𝛼

𝛼
where 𝝎 ∼ 𝑁 𝟎, 𝐼𝜎2 and 𝛼 ∈ ℝ, then 𝒚𝑎 and 𝒚𝑏 are independent random variables (fixed 𝒙).

• Price to pay: SNR(𝒚𝑎) < SNR(𝒚)

• At test time, 𝑓test(𝒚) =
1

𝑁
σ𝑖 𝑓 𝒚 +

1−𝛼

𝛼
𝝎𝑖 with 𝝎𝑖 ∼ 𝒩(𝟎, 𝐼𝜎2)
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• Can be extended to other noise distributions [Monroy, Bacca and Tachella, CVPR 2025]

Recorrupted2Recorrupted
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Stein’s Unbiased Risk Estimator

𝔼𝒚|𝒙 𝒚 − 𝒙 ⊤𝑓 𝒚 = 𝔼𝒚|𝒙 𝜎
2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

ℒSURE 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

• Stein’s lemma [Stein 1974] : Let 𝒚|𝒙 ∼ 𝒩 𝒙, 𝐼𝜎2 , 𝑓 be weakly differentiable, then 

Measurement

consistency 

Degrees of freedom [Efron, 2004] 

• Hudson’s lemma [Hudson 1978] extends this result for the exponential family (eg. Poisson Noise)

• Beyond exponential family: Poisson-Gaussian noise [Le Montagner et al., 2014]

[Raphan and Simoncelli, 2011]
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Stein’s Unbiased Risk Estimator

Monte Carlo SURE [Efron 1975, Breiman 1992, Ramani et al., 2007]

SURE’s divergence is generally approximated as  

෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚 ≈
𝝎

𝛼

⊤

𝑓 𝒚 − 𝑓 𝒚 + 𝝎𝛼

• Noisier2Noise is equivalent to SURE when 𝛼 → 0 [Monroy Bacca and Tachella, CVPR 2025].

where 𝛼 > 0 small, 𝝎 ∼ 𝒩(𝟎, 𝐼)



25

Stein’s Unbiased Risk Estimator

The solution to SURE is Tweedie’s Formula

• Noise2Score [Kim and Ye, 2021] learns ∇ log 𝑝𝒚 𝒚 from noisy data + denoises with Tweedie.

• Key formula behind diffusion models, which can be trained self-supervised [Daras et al., 2024]

argmin 𝔼𝒚 || 𝑓 𝒚 − 𝒚 − 𝜎2∇ log 𝑝𝒚 𝒚 ||2

𝑓

argmin 𝔼𝒚|| 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚
𝑓

argmin 𝔼𝒚 || 𝒚 − 𝑓 𝒚 ||2 − 2𝜎2෍

𝑖

𝑓 𝒚
𝛿 log 𝑝𝒚(𝒚)

𝛿𝑦𝑖𝑓
Complete squares

Integration by parts

𝑓(𝒚) = 𝒚 + 𝜎2∇ log 𝑝𝒚 𝒚
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Summary So Far

Train

Eval

Test

Eval

Single

𝒚
MMSE

optimal

Unknown

noise

Noise2Noise 1 1

R2R 1 >1

SURE 2 1

Noise2Void 1 1

Blind Spot 1 >1

Autoencoders 1 1

If we have a single 𝒚 and don’t know the noise distribution?
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UNSURE

• SURE’s perspective:

• Not MMSE optimal (but almost)

ℒSURE 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

Assumption: Let 𝒚|𝒙 ∼ 𝒩 𝒙, 𝐼𝜎2 , 𝜎2 unknown

UNSURE [Tachella et al., ICLR 2025] 

ℒUNSURE 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 subject to 𝔼𝒚 σ𝑖
𝛿𝑓𝑖

𝛿𝑦𝑖
(𝒚) = 0
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𝑓∗ 𝒚 = 𝒚 + Ƹ𝜂 ∇ log 𝑝𝒚 𝒚 Ƹ𝜂 =
1

𝑛
𝔼𝒚 ||∇ log 𝑝𝒚 𝒚 ||2

−1

UNSURE

min
𝑓

max
𝜂

𝔼𝒚 || 𝒚 − 𝑓 𝒚 ||2 + 2𝜂෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

(𝒚)

• In practice, we use Lagrange multipliers

1

𝑛
𝔼𝒙,𝒚|| 𝑓

∗ 𝒚 − 𝒙 || = 𝜎2
1

1 −
MMSE
𝜎2

− 1 ≈ MMSE +
MMSE2

𝜎2

• Expected error

• UNSURE can be extended to unknown noise covariance and Poisson Gaussian noise
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Real data experiments

• Cryo electron microscopy images

• Extremely low SNR

• Approx. Poisson-Gaussian noise

Experiments
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Cross-Validation Methods

• SURE’s perspective:

• These methods are not MMSE optimal

• How to remove dependence on 𝑦𝑖: training or architecture

ℒ𝑆𝑈𝑅𝐸 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 + 2𝜎2෍

𝑖

𝛿𝑓𝑖
𝛿𝑦𝑖

𝒚

𝔼𝒚|𝒙 ෍

𝑖=1

𝑛

𝑓𝑖(𝒚) 𝑦𝑖 − 𝑥𝑖 =

Assumption: 𝑓𝑖 does not depend on 𝑦𝑖, that is 
𝛿𝑓𝑖

𝛿𝑦𝑖
= 0. Decomposable noise 𝑝 𝒚 𝒙 = ς𝑝(𝑦𝑖|𝑥𝑖)

ℒ𝐶𝑉 𝒚, 𝑓 = || 𝒚 − 𝑓 𝒚 ||2 subject to  
𝛿𝑓𝑖

𝛿𝑦𝑖
(𝒚) = 0 ∀𝑖, 𝒚

෍

𝑖=1

𝑛

𝔼𝒚−𝑖|𝒙 𝑓𝑖(𝒚−𝑖) 𝔼𝑦𝑖|𝑥𝑖 𝑦𝑖 − 𝑥𝑖 = 0

=0 
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Measurement Splitting

Noise2Void [Krull et al., 2019], Noise2Self [Batson, 2019]

• During training flip centre pixel

• Computes loss only on flipped pixels

Neighbor2Neighbor [Huang, 2023]

• Use different subsampling as input and target

• Assumes scale invariance

Cross-validation [Efron, 2004]: random split 𝒚 =
𝒚𝑎
𝒚𝑏

at each iteration 

ℒ𝑁2𝑉 𝒚, 𝑓 = 𝔼𝑎,𝑏|| 𝒚𝑏 − diag 𝒎𝑏 𝑓 𝒚𝑎 ||2

where 𝒎𝑏 ∈ 0,1 𝑛 masks out the pixels in 𝒚𝑎.
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Measurement Splitting

At test time, 𝑓 𝒚 is evaluated as 

1. Test 𝑓 as trained (expensive)

𝑓test(𝒚) =
1

𝑁
σ𝑖𝑀 𝑓 𝒚𝒂𝒊 with 𝒚𝒂𝒊 ∼ 𝑝 𝒚𝒂 𝒚 and 𝑀 = σ𝑖

𝑁 diag (𝒎𝑏,𝑖)
−1

2. Assume good generalization of 𝑓 (cheap)

• 𝑓test 𝒚 = 𝑓 𝒚𝒂 with 𝒚𝒂 ∼ 𝑝 𝒚𝒂 𝒚

• 𝑓test 𝒚 = 𝑓 𝒚
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Blind Spot Networks

Blind spot networks [Laine et al., 2019], [Lee et al., 2022]

• Convolutional architecture that doesn’t ‘see’ centre pixel by construction 

ℒBS 𝒚, 𝑓BS = || 𝒚 − 𝑓BS 𝒚 ||2
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Autoencoders

Assume

• 𝑓 has a strong bottleneck

ℒAE 𝒚, 𝑓 = || 𝒚 − 𝑓AE 𝒚 ||2

Autoencoders

𝑑

ℝ𝑘ℝ𝑛 ℝ𝑛

𝑓AE = 𝑑 ⋅ 𝑒

𝑒 𝑑

• Noise distribution is ‘high-dimensional’ whereas signal distribution is ‘low-dimensional’

σ𝑖
𝛿𝑓𝑖

𝛿𝑦𝑖
𝒚 ≈ 𝑂(𝑘) ≪ 𝑛 is small
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Summary

Train

Eval

Test

Eval

Single

𝒚
MMSE

optimal

Unknown

separable 

noise

Unknown

coloured

noise

Noise2Noise 1 1

R2R 1 >1

SURE 2 1

UNSURE 2 1

Noise2Void 1 1

Blind Spot 1 >1

Autoencoders 1 1

No free lunch: less assumptions about noise = less optimal estimator
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Summary
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Sample Complexity

MSE - MMSE
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Self-supervised validation

• Follow the same validation practices in supervised learning
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For 𝐴 ≠ 𝐼, most estimators can be adapted to approximate

𝔼𝒙,𝒚 ||𝐴(𝒙 − 𝑓 𝒚 )||2

In this case, the risk does not penalise 𝑓(𝒚) in the nullspace of 𝐴!

Incomplete Measurements?

𝐴

𝒇



Learning from Measurements

How to learn from only 𝒚?

• Access multiple operators 𝒚𝑖 = 𝐴𝑔𝑖𝒙𝑖 with 𝑔 ∈ {1, … , 𝐺}

• Each 𝐴𝑔 with different nullspace

• Offers the possibility for learning using multiple measurement operators

𝐴1𝑥1 𝐴3𝑥3𝐴2𝑥2𝐴1𝑥1 𝐴2𝑥2 𝐴3𝑥3

41



Necessary Condition

Proposition: Learning reconstruction mapping 𝑓 from observed 

measurements possible only if 

rank 𝔼𝑔 𝐴𝑔
⊤𝐴𝑔 = 𝑛

and thus, if 𝑚 ≥ 𝑛/𝐺.

Intuition: we need that the operators 𝐴1, 𝐴2, … 𝐴𝐺 cover the whole ambient space [T., 2022].

𝐴1 𝐴2 𝐴3 𝐴4

+ + + =

42



We will consider networks ෝ𝒙 = 𝑓(𝒚, 𝐴) , where 𝑓 is also a function of 

measurement operator  e.g.,

• Filtered back projection 𝑓 𝒚, 𝐴 = 𝑓(𝐴†𝒚)
• Unrolled networks…

• Naïve measurement consistency loss:

Without noise, a minimizer is the trivial solution 𝑓 𝒚, 𝐴𝑔 = 𝐴𝑔
†𝒚, ∀𝑔

Learning Approach

ℒMC 𝑓 = 𝔼𝒚,𝑔 ||𝒚 − 𝐴𝑔 𝑓 𝒚, 𝐴𝑔 ||2

𝐴𝑇 outputinput

43



Measurement Splitting Revisited

Assume clean measurements, sample additional mask 𝑆 ∼ 𝑝(𝑆 |𝐴𝑔) and mask inputs 

ℒSPLIT 𝒚, 𝑓 = 𝔼𝑆|| 𝒚 − 𝐴 𝑓 𝑆𝒚, 𝑆𝐴 ||2

Self-supervised learning via data undersampling (SSDU) [Yaman et al., 2019] 

44

𝑆

𝒇

𝐴 ℒSPLIT



Measurement Splitting Revisited

𝐴1

𝑆𝐴

𝑓1
∗ 𝒚 = 𝔼{𝐴1𝒙|𝑆𝒚, 𝑆𝐴} 𝑓2

∗ 𝒚 = 𝔼{𝐴2𝒙|𝑆𝒚, 𝑆𝐴}

𝐴2

𝑆𝐴

𝑓∗ 𝒚 = 𝑓1
∗ 𝒚 + 𝑓2

∗ 𝒚 = 𝔼{𝒙|𝑆𝒚, 𝑆𝐴}

Inpainting example with 𝐺 = 2 operators 

45

Theorem [Daras et al. 2024]. If 𝔼{𝐴⊤𝐴|𝑆𝐴} has full rank, it has same minimizer as supervised loss, 

𝑓∗ 𝑆𝒚, 𝑆𝐴 = 𝔼 𝒙 𝑆𝒚, 𝑆𝐴}



Measurement Splitting Revisited

ℒSPLIT 𝒚, 𝑓 = 𝔼𝑆|| 𝒚 − 𝐴 𝑓 𝑆𝒚, 𝑆𝐴 ||2

= 𝔼𝑆|| 𝑆𝒚 − 𝑆𝐴 𝑓 𝑆𝒚, 𝑆𝐴 ||2 + ||(𝐼 − 𝑆)𝒚 − (𝐼 − 𝑆)𝐴 𝑓 𝑆𝒚, 𝑆𝐴 ||2

What happens if we have noisy data?

46

Can be replaced by SURE,

R2R, etc. 
Not affected by separable noise



Using All Measurements

Can we use all measurements?

Multi Operator Imaging (MOI) [Tachella et al., NeurIPS 2022] 

ℒMOI 𝒚, 𝑓 = 𝒚 − 𝐴𝑓 𝒚, 𝐴 2 + 𝔼𝐴′ 𝑓 𝐴′ෝ𝒙, 𝐴′ − ෝ𝒙 2 with ෝ𝒙 = 𝑓 𝒚, 𝐴

Replaced by SURE, R2R, etc. Enforces 𝑓 𝐴𝒙, 𝐴 ≈ 𝑓 𝐴′𝒙, 𝐴′

47

𝒇
𝐴

𝐴′
𝒇



Magnetic Resonance Imaging

• Unrolled network

• FastMRI dataset (single coil)

• 𝐴𝑔 are subsets of Fourier measurements (x4 downsampling)

Measurements 𝑦 Signal 𝑥 Measurement Splitting MOISupervised

48



Inpainting

• U-Net network

• CelebA dataset

• 𝐴𝑔 are inpainting masks

Signal 𝒙 MOISupervisedMeasurements 𝑦
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Part 4: Learning with 
equivariance
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Symmetry Prior

Idea: Most natural signals sets 𝒳 are invariant to groups of transformations.

Example: natural images are translation invariant

• Mathematically, a set 𝒳 is invariant to 𝑇𝑔 ∈ ℝ𝑛×𝑛
𝑔∈𝐺

if

∀𝒙 ∈ 𝒳, ∀𝑔 ∈ 𝐺, 𝑇𝑔𝒙 ∈ 𝒳

Other symmetries: rotations, permutation, amplitude
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Symmetry Prior

Equivariant Imaging [Chen, Davies and Tachella, ICCV 2021]

For all 𝑔 ∈ 𝐺 we have

𝒚 = 𝐴𝒙 = 𝐴𝑇𝑔𝑇𝑔
−1𝒙

• We get multiple virtual operators 𝐴𝑔 𝑔∈𝐺
‘for free’!

• Each 𝐴𝑇𝑔 might have a different nullspace

= 𝐴𝑔𝒙′
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Necessary condition

Proposition [T. et al., 2023]: Learning reconstruction mapping 𝑓 from observed 

measurements possible only if 

rank 𝔼𝑔 𝑇𝑔
⊤𝐴⊤𝐴𝑇𝑔 = 𝑛, 

and thus if 𝑚 ≥ max
𝑐𝑗

𝑠𝑗
≥

𝑛

𝐺
where 𝑠𝑗 and 𝑐𝑗 are dimension and multiplicity of irreps.

𝐴1 𝐴2 𝐴3 𝐴4
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(Non)-Equivariant Operators

Translation Rotation Scaling Amplitude

Gaussian 

Blur

Image 

Inpainting

Sparse-view

CT

Accelerated

MRI

Downsampling

(with antialias)

?
?
?
?
?

? ?
?
?
?
?

?
??

? ?
? ?

?
?

Theorem [T. et al., 2023]: The full rank condition requires that 𝐴 is not equivariant: 𝐴𝑇𝑔 ≠ ෨𝑇𝑔𝐴

rank 𝔼𝑔 𝑇𝑔
⊤𝐴⊤𝐴𝑇𝑔 = rank 𝐴⊤(𝔼𝑔 ෨𝑇𝑔

⊤ ෨𝑇𝑔)𝐴 = rank 𝐴⊤𝐴 = 𝑚 < 𝑛
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Equivariant Imaging

How can we enforce equivariance in practice?

Idea: we should have 𝑓 𝐴𝑇𝑔𝒙 = 𝑇𝑔𝑓(𝐴𝒙), i.e. 𝑓 ∘ 𝐴 should be 𝐺-equivariant

𝐴

𝑓
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Equivariant Imaging

ℒEI 𝒚, 𝑓 = 𝔼𝑔 || 𝑇𝑔ෝ𝒙 − 𝑓 𝐴𝑇𝑔ෝ𝒙 ||2

Proposition [Tachella & Pereyra, 2024]: For linear and measurement 

consistent 𝐴𝑓 𝐴𝒙 = 𝐴𝒙 reconstruction, we have

ℒEI 𝒚, 𝑓 = ||𝒙 − 𝑓 𝒚 ||2 + 𝑏𝑖𝑎𝑠

where the bias term is small if 𝑓 ∘ 𝐴 is not equivariant.

How can we enforce equivariance in practice?

where ෝ𝒙 = 𝑓(𝒚) is used as reference
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Equivariant Imaging

Robust Equivariant Imaging [Chen, Tachella and Davies, CVPR 2022]

ℒREI 𝒚, 𝑓 = 𝑓 𝒚 − 𝒙
2
+ ℒEI 𝒚, 𝑓

Replaced by SURE, 

R2R, etc

enforces equivariance of 𝑓 ∘ 𝐴

𝒇
𝐴

𝒇
𝐴𝑇



Equivariant imaging Fully supervised𝐴†𝑦 Meas. consistency
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MRI

• Operator 𝐴 is a subset of Fourier measurements (x2 downsampling)

• Dataset is approximately rotation invariant

Signal 𝑥 Measurements 𝑦

Chen, T., Davies, CVPR 2022
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Noisy 

measurements 𝑦

Robust EI Supervised Clean signal 𝑥 Meas. consistency

Computed Tomography

• Operator 𝐴 is (non-linear variant) sparse radon transform 

• Mixed Poisson-Gaussian noise 

• Dataset is approximately rotation invariant

Chen, T., Davies, CVPR 2022
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Image Deblurring

• Operator 𝐴 is isotropic blur with Gaussian noise

• Dataset is approximately scale invariant

Scanvic, Davies, Abry, T., 2024



Bonus: Finetuning foundation 
models
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Reconstruct Anything Model

• We trained a model that can solve many inverse problems at once [Terris et al., 2025]
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Finetuning

• The model can be finetuned with self-supervised losses on up to a single 𝒚 𝑁 = 1
• Finetuning can be done in a few seconds 
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Conclusions

Self-supervised learning for imaging problems

• Theory: Necessary & sufficient conditions for learning

• Unbiased risk estimators

• Number of measurements

• Interplay between forward operator & data invariance

• Practice: self-supervised losses 

• Can be applied to any model (including foundation ones!)

• Losses can be combined together



• No ground-truth data

• Minimum prior knowledge
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• Poor reconstructions

• Cannot handle noise/missing data

• Model mismatch

• Doesn’t improve with data

• Requires ground-truth data

• Train/test mismatch
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